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Abstract. Infinite-state reachability problems arising from unbounded-
thread program verification are of great practical importance, yet algo-
rithmically hard. Despite the remarkable success of explicit-state explo-
ration methods to solve such problems, there is a sense that SMT tech-
nology can be beneficial to speed up the decision making. This vision
was pioneered in recent work by Esparza et al. on SMT-based coverabil-
ity analysis of Petri nets. We present here an approximate coverability
method that operates on thread-transition systems, a model naturally
derived from predicate abstractions of multi-threaded programs. In addi-
tion to successfully proving uncoverability for all our safe benchmark
programs, our approach extends previous work by the ability to decide
the unsafety of many unsafe programs, and to provide a witness path.
We also demonstrate experimentally that our method beats all leading
explicit-state techniques on safe benchmarks and is competitive on unsafe
ones, promising to be a very accurate and fast coverability analyzer.

1 Introduction

Unbounded-thread program verification continues to attract the attention it
deserves: it targets programs designed to run on multi-user platforms and web
servers, where concurrent software threads respond to service requests of a num-
ber of clients that can usually neither be predicted nor meaningfully bounded
from above a priori. To account for these circumstances, such programs are
designed for an unspecified and unbounded number of parallel threads.

We target in this paper unbounded-thread shared-memory programs where
each thread executes a non-recursive, finite-data procedure. This model is popu-
lar, as it connects to multi-threaded C programs via predicate abstraction, a tech-
nique that has enjoyed progress for concurrent programs in recent years [5]. The
model is also popular since basic program state reachability questions are decid-
able, although of high complexity: the corresponding coverability problem for
Petri nets was shown to be EXPSPACE-complete [4,21].

Owing to the importance of this problem, much effort has since been invested
into finding practically viable algorithms [1,3,10,11,15–17]. The vast majority of
these are flavors of explicit-state exploration tools. Given the impressive advances
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that SMT technology has made, and its widespread “infiltration” of program
verification, an obvious question is to what extent such technology can assist in
solving the coverability problem.

An encouraging answer to this question was given in a recent symbolic imple-
mentation of the Petri net marking equations technique for coverability check-
ing [6]. The equations are expressed as integer linear arithmetic constraints and
passed to an SMT solver. While the constraints overapproximate the coverability
condition, causing the technique to produce false positives, its success rate was
very convincing.

Building on the promise of this technique, in this paper

1. we develop a similar approach that applies to a computational model more
fitting for software verification, called thread-transition systems (TTS). This
model makes shared and local thread storage explicit and is designed for
encodings of shared-variable concurrent programs. It enjoys a one-to-one cor-
respondence with multi-threaded Boolean programs. The latter in turn is a
widely used software abstraction employed in concurrency-capable tools such
as SatAbs [5] and Bfc [15]. Naturally, we dub our constraint sets thread-state
equations;

2. we equip our approach with a straightforward but effective component to
detect spurious assignments, and to refine the constraints if needed. This
component enables the approach to prove systems unsafe and generate coun-
terexamples; a feature that was not addressed in [6].

Our method is sound but theoretically incomplete. We implemented it in a
tool called Tse; Sect. 5 contains an extensive evaluation on a large number of
Boolean program benchmarks. We give a preview of our findings here:

– Notwithstanding said incompleteness, Tse was able to correctly decide 98 %
of all TTS instances; this includes safe and unsafe ones.

– Comparing to the most competitive complete coverability checker for repli-
cated Boolean programs, Bfc [15], Tse proves to be very close in efficiency
on unsafe benchmarks, and much more efficient than Bfc on safe ones. (The
gap is even larger with other explicit-state explorers.)

In summary, we envision our work to introduce the power of constraint-based
coverability analysis to the world of unbounded-thread program verification. Our
results showcase Tse as a very capable and highly successful replicated Boolean
program verifier.

2 Thread-Transition Systems

We assume multi-threaded programs are given in the form of an abstract state
machine called thread-transition system (TTS) [15]. Such a system reflects
the replicated nature of programs we consider: programs consisting of threads
executing a given procedure defined over shared and (thread-)local variables.
A thread-transition system is defined over a set of thread states T = S × L,
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Fig. 1. A thread-transition system with
thread (�→) and spawn (�) transitions.

where S and L are the finite sets of
shared and local states respectively.
R ⊆ T × T is the transition relation
on T , partitioned into R = �→ ∪ �;
the two partitions intuitively represent
thread transitions and spawn transi-
tions, respectively (semantics below).
We refer to elements of R as edges.
A TTS can now be defined as P =
(T,R). Figure 1 shows an example.

A TTS induces an infinite-state
transition system P∞ = (V∞, R∞), as
follows. For a positive integer n, let
Vn = S × Ln and V∞ = ∪∞

i=1Vi. We
write v = (s|l1, . . . , ln) to denote a
(global) system state with a shared component s, and n threads in local states
li (i ∈ {1, ..., n}).

A transition, written as (s|l1, . . . , ln) � (s′|l′1, . . . , l′n′), belongs to relation
R∞ exactly if one of the following conditions holds:

Thread Transition: n′ = n and there exists (s, l) �→ (s′, l′) ∈ R and i such
that li = l, l′i = l′, and for all j �= i, l′j = lj .

Spawn Transition: n′ = n + 1 and there exists (s, l) � (s′, l′) ∈ R and i such
that li = l, l′n′ = l′, and for all j < n′, l′j = lj .

Thus, a transition in R∞ affects the shared state, and the local state of at most
one thread. It may fire only if one thread—the active thread—is currently at the
corresponding TTS edge’s source thread state. We denote by w �( �→) w′ the
fact that the thread active in w � w′ fires a �→ edge; similarly for �(�).

Let LI ⊆ L be a set of initial local states and sI be the unique initial shared
state; initial states of P∞ hence have the form vI = (sI |l1, . . . , ln) where li ∈ LI

for all i. A path in P∞ is a finite sequence of states in V∞ starting from any vI
whose adjacent elements are related by R∞.

In order to state the problem we are tackling, define the covers relation � over
V∞ as (s|l1, . . . , ln) � (s′|l′1, . . . , l′n′) if s = s′ and [l1, . . . , ln] ⊇ [l′1, . . . , l

′
n′ ], where

[·] denotes a multi-set. We are solving in this paper the coverability problem for
a given (final) state vF ∈ V∞: is vF coverable, i.e. does there exists a path in
P∞ leading to a state v that covers vF : v � vF ? We denote the final shared
state by sF , i.e. vF = (sF | . . .). As an example, state (1|0) is coverable in the
2-thread system derived from the TTS in Fig. 1 with the unique initial thread
state (0, 0); the path consists of one thread firing the edge (0, 0) �→ (1, 1).

The coverability problem is decidable: relation � is a well-quasi order with
respect to which the system P∞ is monotone [15]. Algorithms for deciding
coverability over such systems exist [2,11] but are of high complexity, e.g.
EXPSPACE-complete for standard Petri nets [4,21], which are equivalent in
expressiveness to infinite-state transition systems obtained from TTS [15].
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3 Safety Proofs via Thread-State Equations

In this section we describe how, given a coverability problem, we derive a set
of equations whose inconsistency (unsatisfiability of their conjunction) implies
the unreachability of any global state covering the final state vF , and hence the
safety of the infinite-state system. We do so by determining constraints on the
number of threads in each local state when a global state is reached, as well as
constraints that encode the synchronization that shared states enforce among
the threads.

3.1 Thread and Transition Counting

Given an initial global state, a finite path p in P∞ can be succinctly and unam-
biguously represented as a sequence of pairs (r, i), where r ∈ R is a TTS edge
and i is a thread index. An abstraction of such a sequence is given by the num-
ber of times each edge in R fires along p. This “counting abstraction”, which
can be seen as simplifying an edge sequence to a multi-set, is rather crude, as
it ignores the order of edges fired along p. On the other hand, it allows us to
express the coverability condition: from the numbers of times each edge fires, we
can obtain the number of threads per local state in the final global state of p. We
now require that they match or exceed the thread counts in vF . Along with the
obvious non-negativity constraints for counters, we obtain a first approximation
of our thread-state equations, as follows.

Given a TTS P = (T,R) and a final state vF , we fix a total order on all
edges, and a total order on all local states. We further introduce:

– an integer vector r of |R| variables, representing the number of occurrences
of each edge along p (the edges appear in r in the given total order);

– an integer vector lI of |L| variables, representing the number of threads per
local state in the initial state of p (the local states appear in lI in the given
total order);

– an integer vector lF of |L| variables, representing the number of threads per
local state in the final state of p (the local states appear in lF in the given
total order);

– an |L|× |R| integer matrix c (a constant) that captures the effect of each edge
on each local state, as follows:

c(l, r) =

⎧
⎨

⎩

+1 if edge r ends in local state l
−1 if r ∈ �→ and r starts in local state l

0 otherwise.
(1)

(For simplicity, we identify l with the local state with number l in the total
order, similarly for r.) We assume R has no self-loops (which are irrelevant
for coverability), hence the quantity c(l, r) is well-defined. Note that the −1
case only applies to standard thread transition edges (“�→”), not to spawns:
the latter affect only the number of threads in the target local state. Also note
that c does not capture shared-state changes.
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With these variables, we define the following system of local-state constraints CL:

CL =
∧

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r ≥ 0 non-negative edge counters
lI ≥ 0
lF ≥ 0 } non-neg. local state ctrs.
∧

l �∈LI
lI(l) = 0 initial state condition

lF = lI + c · r final state condition∧
l∈L lF (l) ≥ |{i : vF (i) = l}| coverability condition

(2)

The notation r ≥ 0 means “pointwise non-negative”; similarly for lI and lF .
Symbol lI(l) refers to the component of lI corresponding to local state l; similarly
for lF (l). Operator · denotes matrix multiplication, |{. . .}| is set cardinality, and
vF (i) stands for the local state of thread i in state vF . These constraints stipulate
that all edge and local state counters be natural numbers; that no thread start
out in a non-initial local state; that the final local state counters account for the
effect of all edges; and that the final global state covers vF .

3.2 Shared State Synchronization

The thread and transition counting constraints reflected in CL ignore the order
in which edges fire along a path p, since distinguishing ordered edge sequences
symbolically is prohibitively expensive. Some of the ordering information can,
however, be recovered, by taking shared state changes into account (which have
also been ignored so far): consecutive edges along p must synchronize on the
shared state “in the middle”.

This requirement can be formalized as follows. Consider an assignment to
(r, lI , lF ) satisfying the constraints CL. We call an edge r ∈ R active if r(r) > 0,
and a shared state active if at least one of its adjacent edges is active.

Observation 1. Let Gr

∣
∣
S

be the directed multi-graph with node set S and edge
multi-set [r ∈ R : r(r) > 0]

∣
∣
S
. That is, Gr

∣
∣
S

is defined over the active edges in
the multiplicity given by r, projected to S. An edge sequence p

1. uses exactly the edges in the multiplicity given by r, and
2. has consecutive edges that synchronize on the shared state,

exactly if p is an Euler path in Gr

∣
∣
S
.

This observation is easily seen to hold: the Euler criterion guarantees that exactly
all edges in Gr

∣
∣
S

(= the active edges, in the given multiplicity) are used. The
“pathness” in the S-projection guarantees the synchronization condition.

We are thus looking for an Euler path in Gr

∣
∣
S
. To formalize its existence, we

use the following standard adjacency notions from graph theory:

in(s) = {r ∈ R | r ends in shared state s}, adj (s) = in(s) ∪ out(s),
out(s) = {r ∈ R | r starts in shared state s}.
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Note that edges that leave the shared state invariant (denoting thread-internal
transitions) are contained in both the in and out sets.

The existence of an Euler path from sI to sF in Gr

∣
∣
S

is known to be equiv-
alent to the conjunction of the following two conditions (see, e.g., [8]):

Flow: each shared state except sI and sF is entered and exited the same number
of times (along with some special conditions on sI and sF ),

Connectivity: the undirected subgraph of Gr

∣
∣
S

induced by the active shared
states is connected (has a path between any two nodes).

We now describe how we formalize these conditions as symbolic constraints.

Flow Condition. We write shared state s’s flow constraints as

flow(s) ::
∑

r∈in(s)

r(r) −
∑

r∈out(s)

r(r) = N (3)

where N is defined depending on the relationship between s, sI , and sF :

N =

⎧
⎨

⎩

0 if s /∈ {sI , sF } or s = sI = sF
−1 if s = sI �= sF
+1 if s = sF �= sI

(4)

Our overall flow condition enforces flow constraints (3) for all shared states:
CF =

∧
s∈S flow(s).

Connectivity Condition. For an Euler path to exist in Gr

∣
∣
S
, the undirected

graph induced by its active shared state nodes must be connected. This is equiv-
alent to the existence of a simple undirected path between the initial shared state
sI and s, for each shared state s. To this end we introduce, for each s ∈ S,

– a vector es of |R| integer variables. These variables, later constrained to be in
{0, 1}, encode, in unary, the set of undirected edges of Gr

∣
∣
S

participating in
the simple path between sI and s.

– a predicate for the existence of such a path to s:

p(s) ::
∑

r∈adj (sI)
es(r) = 1 ∧ ∑

r∈adj (s) es(r) = 1

∧ ∀s′ ∈ S \ {sI , s}
∑

r∈adj (s′) es(r) ∈ {0, 2}
(5)

The first two sums ensure that the initial (sI) and target (s) shared states of
the simple path have exactly one adjacent transition (and thus degree 1). The
last two ensure that each other shared state is either part of the simple path
(and has degree 2) or it is not (and has degree 0).

– a predicate characterizing active shared states: act(s) ::
∑

r∈adj (s) r(r) > 0.
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We now formulate the following system of connectivity constraints CC :

CC =
∧

⎧
⎪⎪⎨

⎪⎪⎩

∧
s∈S

∧
r∈R es(r) ∈ {0, 1}∧

r∈R (r(r) = 0 =⇒ ∧
s∈S es(r) = 0)∧

s∈S\{sI ,sF } act(s) =⇒ p(s)
sI �= sF ∧ act(sF ) =⇒ p(sF )

(6)

These constraints state that the es are bitvectors (used to encode the edge set of
Gr

∣
∣
S

in unary); that inactive edges are excluded from the connected subgraph;
and that each active shared state except sI and sF is connected by a simple path
to the initial shared state; the last line requires the same of sF unless sI = sF .

Just like CL, constraints CF and CC are expressible in the decidable theory
of integer linear arithmetic (ILA). Formulas CL and CF require a number of
variables linear in the size of the input TTS, namely |R|+2|L|, while CC requires
a quadratic number of variables, namely |S|×|R|. This larger number of variables
has consequences for deciding the CC constraints; a fact that is taken into account
by the coverability algorithm proposed in Sect. 4.1.

We finally remark that satisfiability of all conditions together, i.e. CL∧CF∧CC ,
does not guarantee that the edges given by r can be sequenced to a proper path
through P∞. Figure 2 shows a TTS and a satisfying assignment to (r, lI , lF ) that
suggests to form a path consisting of exactly one occurrence of each edge in the
TTS. The S-projection of these edges is connected. However, it is easy to see
that no permutation of the three edges constitutes a valid firing sequence.

Fig. 2. A TTS (left) with sI = 0, LI = {0}, and vF = (0|1), an assignment satisfying
CL ∧ CF ∧ CC (middle), and its S-projection Gr

∣
∣
S

(right)

3.3 Thread-State Equations by Example

Fig. 3. A TTS

We use the TTS of Fig. 3 to showcase how our approach
attempts to symbolically solve the coverability problem, by
reducing it to a conjunction of integer linear constraints.
We consider the case where sI = 0, LI = {0} and therefore
the initial state of P∞ is of the form (0|0,...,0). We would
like to confirm safety with respect to the “bad” final thread
state tF = (1,1). It is not coverable, i.e. there exists no
state reachable from any initial state that covers the final
state vF = (1|1).
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We start by formulating the CL constraints, described in Eq. (2). The first
equation on the left column of Fig. 4 is the final state condition for local state 0.
No edges enter local state 0 but two edges exit it: r0 and r2; hence counters r(0)
and r(2) are subtracted from lI(0) to yield lF (0). (Recall that spawn edges leave
the active thread’s local state intact; hence r1 does not affect lF (0).) We derive
the final state constraints for the remaining local states similarly; for these the
entries of lI are 0 by the initial state condition of (2). The coverability condition
of (2) for final state vF = (1 | 1) translates into lF (1) ≥ 1.

Fig. 4. Thread-state equations for the TTS of Fig. 3. Notation lF (i) stands for the
counter variable for local state li ∈ {0, 1, 2} ; r(i) for the counter variable for edge ri.
The left column shows the local state constraints CL, the right column the synchro-
nization constraints CF and the inactive edge condition for r1; the last row shows the
path predicate p(2).

Next we show in Fig. 4 (right) the flow constraints as defined by in (3). The
first equation deals with shared state 0, which has only one adjacent transi-
tion: r0. Since it exists 0 and 0 is initial, we obtain −r(0) = −1. The next equa-
tion deals with shared state 1, which has two adjacent transitions: r0 (entering)
and r1 (exiting); since 1 is final, we obtain r(0) − r(1) = 1. Regarding shared
state 2, edge r2 leaves it invariant, while r1 enters it; we obtain r(1) = 0.

Finally we write the constraints for the active edge condition for transition r1,
and the predicate p(2). If r1 occurs 0 times then the values e1(1) and e2(1) are
set to 0 so that the undirected edges they encode cannot be part of simple
paths between the initial shared state and shared states 1 and 2 respectively.
p(2) checks for existence of a simple, undirected path between shared states 0
(initial) and 2. The values encoding their adjacent edges, e2(0) and e2(1), are
set to 1 so that shared states 0 and 2 serve as source and target of the path. For
shared state 1, the sum of their adjacent edges is set to either 0 or 2 to allow it
to either be part of the simple path or not.

The above TSE are unsatisfiable, confirming the uncoverability of tF . The CF

constraints enforce that r(1) is 0, implying that e2(1) is 0, which prevents a path
between shared states 0 and 2. It turns out that without the connectivity condi-
tion, the TSE permit the spurious two-thread solution r(2) = 1, r(0) = 1: firing
these edges in some order would cover local state 1 (local-state constraints), and
the flow constraints are satisfied as well; note that edge r2, once projected to S,
is a self-loop and thus irrelevant for Eq. (3). The two edges do not, however, syn-
chronize on the shared state, no matter which order they fire (the S-projection
permits no Euler path). This failure is caught by Eq. (6).
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4 Coverability Analysis via Thread-State Equations

We are now ready to incorporate our thread-state equations into an algorithm
for establishing system safety. We also present a simple refinement scheme that,
very often in practice, enables our algorithm to prove unsafety.

4.1 Coverability via TSE: The Algorithm

Overview. Our algorithm employs the local-state, flow, and connectivity con-
straints given by CL, CF , and CC , respectively. Constraints CC , formulating the
(non-trivial) connectedness condition for graph Gr

∣
∣
S
, use a number of variables

quadratic in the size |S|+ |L|+ |R| of the TTS (see Sect. 3.2). As we have deter-
mined empirically, they tend to be more expensive to check for satisfiability than
CL and CF . Our algorithm is therefore composed of two sub-processes, as fol-
lows. Process A implements the main algorithm and is described in detail below.
Process B runs in parallel with A and attempts to prove safety using the full set
of constraints ψ = CL ∧CF ∧CC , including CC . If it proves ψ unsatisfiable, it kills
A and returns “uncoverable” as the overall answer. If ψ is satisfiable, or B runs
out of memory, it exits without returning an answer, and process A continues
alone.

The composition of processes A and B is shown in Algorithm 1, which
attempts to decide the reachability, in P∞, of a global state covering vF . We
describe in the following the implementation of process A, which uses the (more
lightweight) counting and flow constraints to prove safety, and a witness gener-
ation scheme to prove unsafety. Process A begins by building the thread-state
equations ϕ = CL ∧ CF for the given P, and passing it to a model-building SMT
solver capable of deciding integer linear arithmetic formulas (Line A1). If the
solver decides ϕ is unsatisfiable, the algorithm returns “uncoverable”.

Otherwise let m be a model, i.e. an assignment to (r, lI , lF ) (Line A2). From
these assignments we can extract the number nm of threads that exist at the
beginning of the path to be built as is the sum of all lI variables, and the
number sm of threads spawned along the path as the sum of all r variables that
correspond to spawn edges (Lines A3 and A4).

Process A now needs to check whether the assignment obtained in m is
spurious, or whether it can be turned into a proper witness path in P∞. To do
this efficiently, we generalize this task and ask whether vF is coverable along
any path, but given limited resources, namely nm initial threads and at most
sm spawns. The key is that this is a finite-state search problem. We have built
our own, reasonably efficient and complete, counterexample-producing explorer
for this purpose; it is invoked in Line A5. If this search is successful, we have a
solution to the infinite-state search problem as well: we return the witness path
generated by Fss(P, nm, sm) as the answer produced by Algorithm 1.

If the finite-state search is unsuccessful, it shows that, if a state covering
vF is reachable, then only along a path that starts with more than nm initial
threads (“n > nm”) or spawns more than sm threads along the way (“s > sm”).
This condition is enforced in Line A7, thus strengthening ϕ. In contrast to Lines
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Algorithm 1. Coverability(P, sI , LI , vF ).
The return statements kill off the respective other process before returning
Input: TTS P; initial shared state sI ; initial local states set LI ; final state vF
Output: “uncoverable”, or “coverable” + witness path

Process A

1: ϕ := CL ∧ CF

2: while ∃m : m |= ϕ
3: nm :=

∑

l∈L lI(l)(m)
4: sm :=

∑

r∈� r(r)(m)
5: if Fss(P, nm, sm) = “coverable” + witness p
6: return “coverable” + p
7: ϕ := ϕ ∧ (n > nm ∨ s > sm)
8: return “uncoverable”

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Process B

1: ψ := CL ∧ CF ∧ CC

2: if ψ is unsat
3: return “uncoverable”

A3 and A4, the strengthening is expressed symbolically over the variables in lI
and r. More precisely, n > nm abbreviates the formula

lI(0) + . . . + lI(|L| − 1) > nm ,

where the lI(i) are variables, and nm is the constant computed in Line A3. The
formula abbreviated by s > sm is built similarly; here the sum expression for s
is formed over the variables in r that correspond to spawn edges.

Given the strengthening to ϕ computed in Line A7, process A returns to the
beginning of the loop and checks ϕ for satisfiability.

Finite-State Search. A breadth-first style algorithm for routine Fss is shown on

Algorithm 2. Fss(P, n, s)
1: W := In ; E := In
2: while ∃w ∈ W
3: W := W \ {w}
4: for each w′ �∈ E: w �( �→) w′

∨ (w �(�) w′ ∧ w.s > 0)
5: if w′ 	 vF then
6: return “coverable”
7: if w �(�) w′ then
8: w′.s--
9: W := W ∪ {w′}; E := E ∪ {w}

10: return “uncoverable”

the right. It maintains a worklist W and
an explored set E, both initialized to
the of initial states In, which covers all
combinations of initial threads with size
n. Each state w maintains a counter s to
record the remaining number of spawns
that can be fired from w; for w ∈ I,
w.s = s. In each step, Fss removes a
state w from W and expands it to w′

if w.s allows so. It returns coverable if
w′ � vF ; otherwise steps forward. w′

decreases the value of s inherited from
w if the transition is due to a spawn.

4.2 Coverability via TSE: Analysis

We first prove the soundness (partial correctness) of Algorithm1, and then dis-
cuss its termination. We assume that Lines A2 and B2 use a sound, complete,
and model-building ILA solver; we use Z3 [20] in our experiments.
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Partial Correctness. We begin our analysis with the following property.

Lemma 2. If vF is coverable in P∞, then ϕ built in Lines A1 and A7 and ψ
built in Line B1 are satisfiable.

Theorem 3 (Soundness). If Algorithm1 returns “coverable”, vF is coverable
in P∞. If Algorithm1 returns “uncoverable”, vF is uncoverable in P∞.

Proof. If Algorithm 1 returns “coverable”, vF is coverable, as procedure Fss
running on a finite state space is sound and complete. If Algorithm1 returns
“uncoverable”, triggered by the unsatisfiability of ϕ in Line A2 or ψ in Line B2,
then vF is uncoverable in P∞ by Lemma 2. ��
Termination. In general, Algorithm1 is not guaranteed to terminate: neither of
the two processes A and B may return. Two different scenarios can lead to non-
termination. The first is that despite an uncoverable final state, A keeps finding
spurious assignments, and B does the same or times out. Consider again the
scenario and the assignment (r, lI , lF ) shown in Fig. 2. As discussed in Sect. 3.2,
this assignment is spurious, as will be confirmed by the invocation of Fss(P, 1, 0),
which fails to reach a state covering vF . ϕ is strengthened by lI(0) > 1. The result
is again satisfiable, this time with a model that sets all of r(0), r(1), r(2) and
lF (1) to 2. We see that, for any nm, there exists a model of ϕ satisfying r(i) = nm

for i ∈ {0 . . . 2}, lI(0) = nm, lF (1) = nm, which never translates to a genuine
path in P∞. Therefore Algorithm 1 will not terminate.

The other non-termination scenario is that of a coverable final state that is
overlooked as the search diverges in the wrong direction. The problem is that
increments applied to the initial thread count n and the spawn count s by the
solver may not be fair : Line A7 only requires one of them to go up. As a special
case, if the TTS has no spawn transitions (�= ∅), we can tighten Line A7 to
ϕ := ϕ ∧ n > nm, in which case the algorithm is (in principle) complete for
unsafe instances.

5 Empirical Evaluation

The technique presented in this paper is implemented in a coverability checker
named Tse (for “Thread-State Equation”). Tse is written in C++ and uses Z3
(v4.3.1) as the back-end ILA solver. It takes as input coverability problems for
TTS. We used a benchmark suite of concurrent Boolean programs to evaluate
Tse. We ran Tse on Boolean programs in order to compare with the following
state-of-the-art checkers1:

Petrinizer: An SMT-based coverability checker described in [6] (v1.0)
Bfc: A coverability checker with forward oracle presented in [15] (v2.0)
Bfc-Km: A generalized Karp-Miller procedure presented in [15] (v1.0)
IIC: Incremental, inductive coverability algorithm [17]
Mist-Ar: An abstraction refinement method presented in [10] (v1.1)
Mist-Eec: Forward analysis with enumerative refinement [11] (v1.1)
1 Available at www.cprover.org/bfc/; github.com/pierreganty/mist; and http://www.

mpi-sws.org/∼fniksic/cav2014/repository.tgz.

www.cprover.org/bfc/
http://www.github.com/pierreganty/mist
http://www.mpi-sws.org/~fniksic/cav2014/repository.tgz
http://www.mpi-sws.org/~fniksic/cav2014/repository.tgz
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Benchmarks. Our benchmark set contains 339 concurrent Boolean programs
BP min. max.
|S| 5 32769
|L| 17 55
|R| 18 584384

generated from concurrent C programs (taken from [15,19]),
135 of which are safe. For each example, we consider a reach-
ability property that is specified via an assertion. The table
on the right shows the size ranges of the BPs.

To apply Tse to C programs, we use SatAbs to transform those pro-
grams to TTS (option --build-tts) via intermediate Boolean programs [5].
When SatAbs requires several CEGAR iterations over the C programs until the
abstraction permits a decision, the same C source program gives rise to several
Boolean programs and TTSs.

Experimental Setup. The main objective of our experiments with BPs is
to measure the competitiveness of Tse against state-of-the-art infinite-thread
BP checkers; this is mostly variants of the Bfc tool. We also investigated how
Tse fares against tools targeting Petri nets, of which there are many; most
interesting for us is the Petrinizer tool, as it implements an idea similar to
the one used in (and inspirational for) Tse. Petri net tools can be used for
BP verification by converting those programs to Petri nets. We have exper-
imented with two translators: one used in [6,15]2, and one by Pierre Ganty
et al. github.com/pevalme/bfc fork, which tries to alleviate the blowup incurred
by shared state conversion. As different tools accept different translations, we
used both translators in our experiments. The running times we report in the
results ignore translation time, which ranges from almost nothing up to dozens
of seconds.

All experiments are performed on a 2.3 GHz Intel Xeon machine with 64 GB
memory, running 64-bit Linux. The timeout is set to 30 min and the memory
limit to 4 GB. All benchmarks and our tool are available online [18].

Precision. Table 1 compares the results of precision on BPs for all tools. Tse
successfully decides all BPs except 5 unsafe instances, where the SMT solver runs
out of memory. Both Bfc and Bfc-Km prove 4 out of these 5 instances. As for
the safe instances, it was interesting to observe that the connectivity constraints
CC were never required to conclude unsatisfiability, i.e. the constraints CL and
CF were already inconsistent. This means that process B in Algorithm 1 never
ran to completion.

Table 1. Precision results for all tools. Note that Petrinizer decides only safe bench-
marks

2 www.cprover.org/bfc/.

http://www.github.com/pevalme/bfc_fork
www.cprover.org/bfc/
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Fig. 5. Performance comparison for Boolean Programs: Tse vs. Bfc (left) and vs.
Petrinizer (right). Each dot represents execution time for one program (TO = timeout)
(Color figure online)

Fig. 6. Comparison on Boolean Programs: cactus plot comparing Tse with prior cov-
erability tools. An entry of the form (k, t) for some curve shows the time t it took to
solve the k easiest — for the method associate with that curve — benchmarks (order
varies across methods). ∗ indicates that inputs to this tool are Petri nets from Pierre
Ganty’s translator. (Color figure online)

Efficiency. Figure 5 (left) plots the detailed comparison against Bfc (the most
efficient of the competing tools, according to [15]) over each benchmark. Tse
clearly beats Bfc on safe instances and remains competitive on unsafe ones. In
general, we observe that Bfc outperforms Tse on very small benchmarks which
are solved within one second, an effect that can be attributed to the overhead
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added by the solver. Figure 5 (right) plots the comparison with Petrinizer3 [6].
Since Petrinizer does not handle unsafe instances, we focus on safe ones. Tse is
invariably faster. Figure 6 is a cumulative plot showing the total time (log-scale)
taken to solve the k, for 1 ≤ k ≤ 339, easiest of our benchmark problems, for
all tools. The results demonstrate that in most cases Tse terminates within 5
seconds. Bfc is the most competitive among other tools.

Summary. We summarize the precision and efficiency results as follows. Given
that our tool is sound (it never gives an incorrect answer), and that it does give
an answer in the vast majority of the benchmarks we have used, it is prudent
to base the comparison on the efficiency results, even against exact tools. Here
we observe the strength of Tse especially as a safety prover, i.e. on uncoverable
instances. The aggressive search for counterexamples used in Bfc gives that tool
a nominal advantage for coverable instances, which is, however, hardly decisive
as the running times on those instances tend to be very small.

6 Related Work and Discussion

Groundbreaking results in infinite-state system analysis include the decidability
of coverability in vector addition systems (VAS) [16], and the work by German
and Sistla on modeling communicating finite-state threads as VAS [13]. Numer-
ous results have since improved on the original procedure in [16] in practice
[11,12,22,23]. Others extend it to more general computational models, includ-
ing well-structured [9] or well-quasi-ordered (wqo) transition systems [2,3].

Explicit-state techniques that combine forward and backward exploration
(IIC,Bfc) [15,17] or apply abstraction refinement (Mist-Eec,Mist-Ar) [10,11]
have been shown to efficiently decide the coverability problem for large instances,
like the ones we consider in our work.

Contrary to the above mentioned complete methods for coverability, [6] fol-
lows the direction of trading completeness for performance, by reducing the
coverability problem to linear constraint solving and discharging it to a SMT
solver, and serves as the inspiration of our work. The thread-state equations we
present can be viewed as an instantiation of the marking equation – a classical
Petri net technique – in the domain of TTS. In addition to TSE, we extend
the approach of [6] by equipping our method with a refinement scheme and a
straightforward finite-state search in order to efficiently discover unsafe instances
and provide coverability witnesses.

Another incomplete symbolic approach for coverability analysis utilizing the
marking equation is presented in [24]. CEGAR is applied on top of the marking
equation and is used to guide the solution space of the integer linear constraints.
More complex strategies for guiding the solution space were recently introduced
in [14]. Such schemes differ from ours, as the solutions to TSE are used as the
starting point of the finite state space exploration. If the latter is unsuccessful,
TSE are strengthened to allow a simple but efficient refinement scheme.
3 Petrinizer offers four methods; we use the most powerful: refinement over integers.
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Conclusions. Our experimental results demonstrate the trade-off between com-
plete, explicit state exploration and incomplete, symbolic approaches. Verifying
safe instances often becomes infeasible when trying to retain completeness, but
is shown to be very efficient when posed as a constraint solving problem, as
also pointed out in [6]. Our approach aims at continuing this trend of devising
incomplete yet practical methods for problems of high computational cost [7],
by providing an algorithm that fills in the gap of verification of unsafe instances,
and efficiently solves the coverability problem in software verification for almost
all of our instances.
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