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Abstra
tWe 
onsider a problem whi
h is part of the pro
ess of determin-ing the three-dimensional stru
ture of a protein mole
ule using X-ray
rystallography: given an estimated map of the ele
tron density of themole
ule as a fun
tion on three-dimensional spa
e, we identify regionswhi
h are likely to belong to �-heli
es. Our approa
h is to 
omputea new kind of skeleton - the power shape - and then identify the heli-
al substru
tures within the power shape with a variant of geometri
hashing.1 Introdu
tionX-ray 
rystallography is one of the main te
hniques for determining three-dimensional protein stru
ture. Experimental di�ra
tion data provides theamplitudes of some of the Fourier 
oeÆ
ients of a three-dimensional mapof ele
tron density in a 
rystal of the protein. The phases of the Fourier
oeÆ
ients are estimated using a variety of experimental and 
omputationalte
hniques. When there is high-resolution di�ra
tion data and the phases arewell-estimated, individual atoms are visible in the ele
tron density map anddetermining the three-dimensional stru
ture is easy. Often, however, only anoisy low-resolution map is available.y Computer S
ien
es Dept., Austin, TX 78712, USA. Fax: 512-471-8885. Sup-ported by NSF/CCR-9731977 and an Alfred P. Sloan Foundation Resear
h Fellowship.amenta�
s.utexas.edu 1



At this point, a 
hemist will spend days or weeks at a 
omputer graphi
s ter-minal, manually aligning a sti
k-�gure mole
ular model 
ontaining thousandsof atoms to the density map. Most of the really time 
onsuming, diÆ
ult butde
ipherable, maps are at between 3 and 4 �Aresolution. Finding se
ondarystru
tures, espe
ially the �-heli
es, is one of the �rst steps a human experttakes when aligning the model with the map, and hen
e it is one of the �rststeps we should attempt to automate.Our work: Given a density map represented by a three-dimensional gridof fun
tion values as input, we 
ompute an isosurfa
e. We then 
ompute askeletal representation of the solid bounded by the isosurfa
e, known as thepower shape, 
omposed of triangles. For ea
h triangle in the power shape,we examine a set S 0 of nearby power shape verti
es and �nd the helix thatbest agrees with S 0 by geometri
 hashing. If there is suÆ
ient agreement, wereport the points as part of a helix. Sin
e there is a dire
t mapping betweenthe power shape and the isosurfa
e, this 
orresponds to labeling a se
tion ofisosurfa
e as belonging to a helix, as in Figure 1.We have tested the method su

essfully on two density maps, one at 3.0Angstroms and the other at 3.5 Angstroms. At these resolutions �{heli
esare visible as twisted shapes in the isosurfa
e. See Figure 1.Importan
e of the problem: There are at least three ways in whi
hautomati
ally lo
ating �-heli
es 
an be useful. First, it 
an be used as adomain-spe
i�
 visualization tool. Highlighting heli
al portions of the iso-surfa
e 
an make things easier for the 
hemist during manual model building.Se
ond, �nding heli
es is used as part of a density map re�nement algorithm.Information about the three-dimensional stru
ture of the mole
ule is used toimprove the estimated phases, thus improving the quality of the map itself.Often re
onstru
tion is an iterative pro
ess in whi
h model building alter-nates with phase improvement. This would be most useful for noisier, lowerresolutions maps than those we have 
onsidered so far, but our te
hniquemight be appli
able. Finally, it might be possible to 
ombine automati
geometri
 interpretation of the density map with AI methods for predi
t-ing se
ondary stru
ture from sequen
e data to automati
ally form tentativemat
hes of portions of sequen
e data to the map.2 Related workThere is an ex
ellent existing tool for �nding stru
tural fragments su
h as �{heli
es in ele
tron density maps. The most re
ent version of Kevin Cowtan'sfffear program [19℄ 
an �nd heli
es in very low quality low resolution maps(6-8 Angstroms, larger than a single turn of a helix). It sear
hes a dis
reteset of possible orientations of the fragment. For ea
h orientation, it 
onvolvesthe map with a �lter resembling the fragment, by multipli
ation in the fre-quen
y domain. This is quite eÆ
ient, and independent of the fragment size.It takes advantage of the fa
t that the frequen
y domain representation is2



Figure 1: The output of our algorithm on an ele
tron density map of the yMTDenzyme, 
ourtesy of Prof. Jon Robertus (Chemistry, UT Austin). We su

eed inlabeling verti
es of the power shape belonging to ea
h of the the �-heli
es, witha few false positives. On the left, the power shape verti
es whi
h were labeled asheli
al (purple), with the mole
ular ba
kbone as re
onstru
ted by the 
hemists,heli
es highlighted in blue. Most of the purple points far from blue heli
es belongto heli
es in other 
opies of the mole
ule nearby in the 
rystal. On the right,parts of the isosurfa
e 
orresponding to power shape verti
es labeled as heli
alare purple. The map is at 3.0 �Aresolution with an R-fa
tor of .28 (The R-fa
toris a measure of the mismat
h between the map and the 
onstru
ted mole
ularmodel; in this 
ase, when the model is presumed to be good, it 
an be 
onsidereda measure of noise in the map. An R-fa
tor this low indi
ates a reasonably 
leanmap.)already given (the density map is 
onstru
ted from its frequen
y domain rep-resentation). The spatial map of the �ltered density is then 
omputed (FFT)and s
anned for peak �lter responses. Cowtan's approa
h radi
ally optimizesan earlier exhaustive sear
h algorithm due to Kleywegt and Jones [20℄. Whilestill exhaustively sear
hing all possible translations and orientations of thehelix, it speeds things up by avoiding a 
onvolution for ea
h orientation-translation pair.We approa
h the problem di�erently. Features (triangles) in the power shapedetermine positions and orientations whi
h are 
he
ked for mat
hes withthe fragment. This 
uts down the spa
e of transformations examined, butrequires 
omparing the data with the fragment under every transformationsear
hed. In this paper we demonstrate that this approa
h 
an su

essfullylo
ate �-heli
es at moderate resolutions. It remains to be seen if it 
an do somore eÆ
iently than the frequen
y domain approa
h, in general or in somesigni�
ant sub
lass of problems.Computation of isosurfa
es and skeletonization are usual steps in the manualmap interpretation pro
ess. Existing programs, in
luding O [6℄, MapMan [14℄and dm skeletonization �nd one-dimensional skeletons using a voxel-basedthinning algorithm, proposed by Greer [5℄ in 1974. The skeleton is used to3



help identify the main 
hain of the protein during manual model building.A di�erent skeletonization pro
edure was proposed by Leherte et al. [8, 9℄.They 
onstru
t a topologi
al network on the set of 
riti
al points of themap, resulting in a sparser 1D skeleton (ours is a denser 2D skeleton). Theyhave had some su

ess in using this skeleton to identifying �-heli
es at 3�Aresolution (thus, 
omparable to this work), but it seems unlikely that itwould extend to mu
h lower resolutions be
ause the number of 
riti
al pointsde
reases with the map resolution.There is some quite impressive work on the 
ompletely automati
 determi-nation of the entire 3D stru
ture from di�ra
tion data. The wARP systemof Perrakis et al. [10℄ has been su

essful with density maps in the 1-2.5Angstrom range. Their approa
h is based on the `dummy atom' method ofLamzin and Wilson [7℄ for phase improvement. A di�erent approa
h wastaken re
ently by Wang [11℄, who employs a bran
h-and-bound algorithm in
onformation spa
e.3 Skeletonization with the medial axisWe begin by des
ribing the power shape 
onstru
tion. The power shape wasdevised as an approximation of the medial axis of a three-dimensional solid,a di�erent kind of skeleton from that approximated by the one-dimensionalskeletons used in 
urrent systems. Medial axes are somewhat more expres-sive, and might be of independent interest for visualization and other shapeanalysis tasks.
Figure 2: On the left, the medial axis of an obje
t is formed by the 
enters ofthe maximal balls 
ontained in the obje
t. In three dimensions, the medial axis istwo-dimensional. On the right, the power shape approximates the medial axis bythe 
enters of a �nite set of balls. In three dimensions the power shape is madeup of triangles.The medial axis: Given a 
losed surfa
e F , we say a ball B is empty (withrespe
t to F ) if the interior of B 
ontains no point of F . A medial ball isa maximal empty ball; that is, it is not 
ompletely 
ontained in any otherempty ball. The medial axis is de�ned as (the 
losure of) the set of the 
entersof the medial balls. In general, the medial axis of a three-dimensional solidis a two-dimensional surfa
e. 4



Given the medial axis and the radius of the maximal empty ball for ev-ery point of the medial axis, the surfa
e 
an be re
onstru
ted perfe
tly. Inthis sense the medial axis 
ontains more information than a one-dimensionalskeleton 
ould. For example, big side-
hains like tryptophan usually showup as 
attened blobs in the isosurfa
e at 3 �A. The medial axis of su
h ablob is roughly a disk, while the medial axis of a tubular region is 
loser toa one-dimensional 
urve.Power shape: Computing the exa
t medial axis of a three-dimensionalobje
t is diÆ
ult. We approximate the medial axis - an in�nite union ofballs - by a �nite union of balls using the Voronoi diagram. To 
onstru
tthe �nite union of balls approximating the in�nite set of medial balls, wesample the surfa
e and 
ompute the Voronoi diagram of the sample set. Wesele
t a set of verti
es of the Voronoi diagram far from the sample set asour approximate medial axis points. We dis
over the adja
en
ies of thesepoints using the power diagram, an kind of weighted Voronoi diagram. Theresulting polygonal stru
ture is the power shape. A detailed des
ription ofthe 
onstru
tion, and an analysis of its quality as an approximation of themedial axis, as a fun
tion of the quality of the sample set, 
an be found inour papers [1℄, [2℄.To sample an isosurfa
e from a density map, we extra
t a set of verti
es usingthe mar
hing 
ubes algorithm [15℄ as implemented in VTK [16℄. We use theverti
es of the isosurfa
e to 
ompute the power shape. When the density mapis given on a sparse grid, mar
hing 
ubes returns a sparse sample from theisosurfa
e and the resulting power shape is very rough. Choosing more sam-ples from the isosurfa
e, using a smooth interpolant of the mar
hing 
ubesverti
es gives power shapes whi
h do a mu
h better job of approximating themedial axis; see Figure 3.Simpli�
ation of the power shape: Unfortunately, the medial axis tendsto be 
ompli
ated-looking and unstable with respe
t to its input. Smallperturbations on the surfa
e introdu
e large \spikes" in the medial axis. Onthe other hand, portions of the medial axis indu
ed by big shape features arequite stable and give a good approximate des
ription of the shape.To isolate the stable portions, we de�ne a noise threshold �, and de�ne an un-stable medial axis feature as one that might disappear if the surfa
e were per-turbed by �; note that su
h a perturbation might indu
e topologi
al 
hangesin the obje
t. The feature is in danger of disappearing if the points on thesurfa
e to whi
h it 
orresponds are within distan
e � of ea
h other. To elim-inate su
h features, we remove any ball whi
h tou
hes the surfa
e at pointsthat are within distan
e �. The remaining balls may still be very redundant.We therefore remove balls whi
h are almost 
ompletely 
overed by otherballs, using a greedy algorithm, des
ribed in more detail elsewhere [1℄.The net e�e
t of this simpli�
ation pro
ess is to produ
e a two-dimensionalskeletonization whi
h re
e
ts only large shape features. In Figure 3, weshow the power shape of an isosurfa
e for two di�erent values of �, one whi
hmerely removes quantization noise and another whi
h eliminates many shape5



Figure 3: Upper left, the power shape 
al
ulated from a dense set of points on thesmoothed isosurfa
e (
omputed by applying two subdivision steps to the output ofthe mar
hing 
ubes algorithm), and simpli�ed to remove quantization noise. Thispower shape forms a good approximation of the medial axis of the (transparentblue) isosurfa
e. Upper right, the power shape we a
tually use, 
al
ulated dire
tlyfrom the lower resolution mar
hing 
ubes output. Lower left, removing parts ofthe power shape of the smoothed isosurfa
e (ie. upper left) 
orresponding to smallshape features leaves a skeleton very like the mole
ular ba
kbone. Lower right,one-dimensional `bones' skeleton, 
omputed with MapMan.features, leaving only the largest.4 Sear
h pro
edureOur algorithm for re
ognizing �-heli
es in the power shape is a variant ofgeometri
 hashing [12℄. Geometri
 hashing is a general te
hnique for obje
tre
ognition in 
omputer vision. We will review geometri
 hashing then ex-plain the speed-ups we 
an a
hieve in this spe
ial 
ase by using the powershape.Geometri
 hashing: The input to geometri
 hashing is a model M (eg. ahelix) and a s
ene S (eg. the power shape), both represented as sets of points,and set of transformations T whi
h might be applied to M . The output isa mat
hing of portions of the s
ene with the model. The algorithm 
onsistsof a pre-pro
essing phase, whi
h only uses M , and a run-time query phase
omparing S and M . Multiple models 
an be 
onsidered simultaneously,with little additional time required in the run-time query phase.The 
ru
ial observation that makes geometri
 hashing work is that we 
an6



express the 
oordinates of the points in the model M in a basis B de�nedby a 
onstant number of points of the model, so as to be invariant under theset T of transformations.For instan
e, if T 
onsists just of translations, it suÆ
es to 
onsider any pointp 2 M as the origin of the set B of basis ve
tors. In that simple 
ase, wemat
h M to S as follows. Choose a point p in the model as the origin of
oordinate system given by B. Use the 
oordinates of ea
h point of M , withrespe
t to B, as the index of an item in a hash table H. This 
ompletes thepre-pro
essing phase. In the query phase, for ea
h point q in S, use q as theorigin for a basis B. If q is a point in the s
ene su
h that translating p toq mat
hes M with a subset of S, 
orresponding points in the s
ene and themodel will now have the same 
oordinates. We look up ea
h point in S inthe hash table H; if it �nds a 
orresponding point of M , we 
ount one `vote'for this translation. If the number of votes is equal to the number of pointsin M , we 
on
lude that is a mat
h, and we output the translation.To be useful in most settings, the requirements for a mat
h have to be relaxedsomewhat to a

ommodate error. First, the points of M and S might notmat
h exa
tly. This is solved by rounding the 
oordinates used to index andlook up items in the hash table. It might be that some points of M arenot mat
hed by points of S. In general this 
an be solved by requiring thenumber of votes to be at least a �xed per
entage of the number of points inM . But if the point q 
orresponding to the 
orre
t origin is missing from Sthen the entire mat
h is missed. This is solved by storing the 
oordinates ofthe model points inM with respe
t to every origin p 2M into the hash table.Votes are 
ounted separately for ea
h 
hoi
e of p; translations mat
hing pairsp 2 M; q 2 S whi
h re
eive many votes are output. Note that although thehash table gets larger, the number of hash-table lookups in the run-timequery phase remains the same.Finally, there are some obvious optimizations. Using the relaxations de-s
ribed in the previous paragraph, every transformation mat
hing M to asubset of S will be found multiple times. On
e a mat
h is found, the 
orre-sponding points of S 
an be eliminated from further 
onsideration. Also, ifM is small (geometri
ally) with respe
t to S, only points of S near q needto be looked up in the hash table.Our algorithm: In our 
ase, we used 80 points distributed along a two-turnsegment of an ideal �-helix ba
kbone as the modelM and the verti
es of thepower shape as the s
ene S, and the rigid motions (rotation and translation)as the set T of transformations. The prepro
essing step involves building thehash table H. For this set of transformations we need three non-
ollinearpoints to de�ne a referen
e frame. Given model points x1; x2; x3, we let x1be the origin and de�ne the three orthogonal basis axes by by the ve
torsv1 = n( ~x2 � ~x1)v2 = n( ~x3 � ~x1 � (( ~x3 � ~x1) � v1)v3 = v2 � v17



where n() represents normalization. Ea
h non-
ollinear triple of points in the�rst turn of our model helix is used to 
onstru
t a basis and the 
oordinatesof all the points inM are expressed in this basis and stored in the hash table.This prepro
essing step needs to be done only on
e, for the parti
ular helixmodel. Note that sin
e order matters, every three points need to be taken inea
h of six permutations.We use some observations about the stru
ture of power shapes of heli
esin density maps to speed up the run-time query phase. First, heli
es tendto be dense, so that the parts of the power shape belonging to a helix are
ontained in a single 
onne
ted 
omponent of the power shape. And se
ond,be
ause they are tightly wound, heli
es tend to 
ontain rather large trianglesspanning 
urves or even entire turns of the helix.In generi
 geometri
 hashing, all triples of power shape verti
es are tried asbases. But sin
e only one triple from a parti
ular helix in the s
ene has tobe 
hosen for the helix to be found, and any helix in the s
ene has manytriangles spanning three of its verti
es, we limit our attention to triples ofpoints whi
h form triangles in the power shape. The verti
es of ea
h triangleonly have to be 
onsidered in one order, sin
e the basis a

ording to ea
hpermuation was used to 
reate entries in the hash table. For ea
h triangle,we use the the 
onne
tivity of the power shape to sele
t a subset S 0 of thepower shape verti
es in the neighborhood of the basis triangle. We perform abreadth �rst traversal of the graph formed by the power shape edges, startingat the basis triangle. We stop either when we have exhausted the 
onne
ted
omponent or at most a 
onstant number 
 (we use 
 = 200) of verti
es havebeen rea
hed. We then look up only these 
 points in the hash table H.Finally, when a mat
h is found, we try to label as many power shape verti
esas belonging to the helix as possible. When a basis is su

essful, meaningthat at least one model-basis pair re
eives many votes, we expand the set ofpower shape verti
es 
onsidered using another breadth-�rst sear
h, and lookthose up in the hash table as well.This results in the following algorithm:For ea
h triangle t in the powershape do:1: Let B be the orthonormal basis de�ned by the verti
es of t2: Starting at the verti
es of t obtain the neighborhoodof t by breadth �rst traversal . This neighborhood forms S 0 � S.3: Compute the 
oordinates of all verti
es in S 0 with respe
t to basis B.4: Look up ea
h vertex in S 0 in the hash tableand vote for (model,basis) pairs.5: If the number of votes for a given (model,basis) pairis above a threshold:a: Label all verti
es that voted for this transformation as part of a helix.b: Expand the set S 0 by breadth-�rst traversal and label as many new points as possible.
8



5 ResultsThe input �les for the run-time query phase were power shapes for the yMTDenzyme shown in Figure 1 and the barley 
hitinase shown in Figure 4, 
on-taining respe
tively 14,692 and 80,542 verti
es and 144,420 and 203,774 tri-angles. We visually 
ompared the sets of power shape verti
es labeled asbelonging to heli
es with the models of the mole
ular ba
kbones 
onstru
tedby the 
hemists, with the heli
ies on the ba
kbone labeled by the DSSP al-gorithm [13℄. We found that some of the power shape verti
es around ea
hof the heli
es in ea
h mole
ule were labeled, ex
ept for a single-turn helixin the 
hitinase mole
ule (a twist in the 
hitinase ba
kbone is erroneouslylabeled as heli
al by DSSP; our algorithm did not label any verti
es in thatarea). We also labeled a few `false positive' regions near short 
urves in theba
kbone. In the images, there appear to be many `false positives'. Thisis be
ause ea
h density map 
ontains parts of several mole
ules whi
h arenear the 
entral mole
ule in the 
rystal. Most of the labeled verti
es whi
hdo not appear to be near heli
es in the ba
kbone are near heli
es in theseother 
opies of the mole
ule. About 35% of the verti
es of the yMTD powershape were labeled as belonging to heli
es and about 11% of the verti
es inthe 
hitinase power shape.The run-time query phase of the algorithm as des
ribed in the previous se
-tion required about 2 hours and 15 minutes on the 
hitinase and about 2hours for the yMTD. This large running time is mostly spent sear
hing largeportions of the power shape that do not represent a helix.Re
all, however, that only one basis de�ning a mat
h for the helix in the s
enemust be found, and many bases are generally found for ea
h helix, so it shouldbe possible to skip some 
andidate bases and still �nd every helix. A 
ommonoptimization in geometri
 hashing is to randomly 
hoose a small subset ofbases to try. Here, we 
hose instead to heuristi
ally eliminate triangles thatare very small (assuming that the tightly-wound heli
es almost universally
ontain long triangles) and those that were numeri
ally unsuitable as bases.Using about 30% of the triangles in the 
hitinase power shape redu
ed therunning time to 40 minutes with no appre
iable di�eren
e in the quality ofthe output, as shown in Figure 4.We also 
onsidered a di�erent heuristi
, eliminating triangles from 
onsider-ation if ea
h of their verti
es belonged to another triangle whi
h had alreadyformed a basis. This redu
ed the running time even more, but seemed harderto justify.6 Dis
ussionThere is a lot of potential here for further work. We have demonstrated that�-shapes 
an be found in density maps at moderate resolution by examining askeletal representation. We are 
urrently engaged in further experimentationwith this implementation, in
luding randomly 
hoosing bases, experiments9



with noisier, poorly-phased maps, and a dire
t 
omparison with fffear.In addition, there are interesting alternative implementations of both of thetwo basi
 building blo
ks of this approa
h, skeletonization and dis
rete shapemat
hing. Geometri
 hashing is one of several te
hniques, in
luding thepossibly more eÆ
ient random sample with 
onsensus [18℄ and alignmentmethods [17℄, for lo
ating a model in a s
ene. `Bones' skeletons might beused instead of power shapes, and the very simpli�ed power shapes fromsmoothed isosurfa
es (Figure 3, lower left) might be more sensitive thanthe rough power shape we are 
urrently using. Medial axis approximations
omputed by voxel-based methods might also work well, and would probablybe faster to 
ompute in this 
ontext.7 A
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Figure 4: The output of the basi
, and an optimized version of the algorithm, on adensity map for the barley 
hitinase protein. The power shape verti
es labeled asbelonging to heli
es are shown, along with the mole
ular ba
kbone as re
onstru
tedby the 
hemists with the heli
es hilighted. We fail to lo
ate any heli
al points neartwo short regions labeled as heli
al in the ba
kbone; the one at the upper leftwas not 
onsidered heli
al by the 
hemists either. Again, there are many pointsdistributed on heli
es on other 
opies of the mole
ule in the 
rystal, as well assome false-positives near non-heli
al regions on the ba
kbone. The input densitymap was at 3.5 �Aresolution.
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