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AbstratWe onsider a problem whih is part of the proess of determin-ing the three-dimensional struture of a protein moleule using X-rayrystallography: given an estimated map of the eletron density of themoleule as a funtion on three-dimensional spae, we identify regionswhih are likely to belong to �-helies. Our approah is to omputea new kind of skeleton - the power shape - and then identify the heli-al substrutures within the power shape with a variant of geometrihashing.1 IntrodutionX-ray rystallography is one of the main tehniques for determining three-dimensional protein struture. Experimental di�ration data provides theamplitudes of some of the Fourier oeÆients of a three-dimensional mapof eletron density in a rystal of the protein. The phases of the FourieroeÆients are estimated using a variety of experimental and omputationaltehniques. When there is high-resolution di�ration data and the phases arewell-estimated, individual atoms are visible in the eletron density map anddetermining the three-dimensional struture is easy. Often, however, only anoisy low-resolution map is available.y Computer Sienes Dept., Austin, TX 78712, USA. Fax: 512-471-8885. Sup-ported by NSF/CCR-9731977 and an Alfred P. Sloan Foundation Researh Fellowship.amenta�s.utexas.edu 1



At this point, a hemist will spend days or weeks at a omputer graphis ter-minal, manually aligning a stik-�gure moleular model ontaining thousandsof atoms to the density map. Most of the really time onsuming, diÆult butdeipherable, maps are at between 3 and 4 �Aresolution. Finding seondarystrutures, espeially the �-helies, is one of the �rst steps a human experttakes when aligning the model with the map, and hene it is one of the �rststeps we should attempt to automate.Our work: Given a density map represented by a three-dimensional gridof funtion values as input, we ompute an isosurfae. We then ompute askeletal representation of the solid bounded by the isosurfae, known as thepower shape, omposed of triangles. For eah triangle in the power shape,we examine a set S 0 of nearby power shape verties and �nd the helix thatbest agrees with S 0 by geometri hashing. If there is suÆient agreement, wereport the points as part of a helix. Sine there is a diret mapping betweenthe power shape and the isosurfae, this orresponds to labeling a setion ofisosurfae as belonging to a helix, as in Figure 1.We have tested the method suessfully on two density maps, one at 3.0Angstroms and the other at 3.5 Angstroms. At these resolutions �{heliesare visible as twisted shapes in the isosurfae. See Figure 1.Importane of the problem: There are at least three ways in whihautomatially loating �-helies an be useful. First, it an be used as adomain-spei� visualization tool. Highlighting helial portions of the iso-surfae an make things easier for the hemist during manual model building.Seond, �nding helies is used as part of a density map re�nement algorithm.Information about the three-dimensional struture of the moleule is used toimprove the estimated phases, thus improving the quality of the map itself.Often reonstrution is an iterative proess in whih model building alter-nates with phase improvement. This would be most useful for noisier, lowerresolutions maps than those we have onsidered so far, but our tehniquemight be appliable. Finally, it might be possible to ombine automatigeometri interpretation of the density map with AI methods for predit-ing seondary struture from sequene data to automatially form tentativemathes of portions of sequene data to the map.2 Related workThere is an exellent existing tool for �nding strutural fragments suh as �{helies in eletron density maps. The most reent version of Kevin Cowtan'sfffear program [19℄ an �nd helies in very low quality low resolution maps(6-8 Angstroms, larger than a single turn of a helix). It searhes a disreteset of possible orientations of the fragment. For eah orientation, it onvolvesthe map with a �lter resembling the fragment, by multipliation in the fre-queny domain. This is quite eÆient, and independent of the fragment size.It takes advantage of the fat that the frequeny domain representation is2



Figure 1: The output of our algorithm on an eletron density map of the yMTDenzyme, ourtesy of Prof. Jon Robertus (Chemistry, UT Austin). We sueed inlabeling verties of the power shape belonging to eah of the the �-helies, witha few false positives. On the left, the power shape verties whih were labeled ashelial (purple), with the moleular bakbone as reonstruted by the hemists,helies highlighted in blue. Most of the purple points far from blue helies belongto helies in other opies of the moleule nearby in the rystal. On the right,parts of the isosurfae orresponding to power shape verties labeled as helialare purple. The map is at 3.0 �Aresolution with an R-fator of .28 (The R-fatoris a measure of the mismath between the map and the onstruted moleularmodel; in this ase, when the model is presumed to be good, it an be onsidereda measure of noise in the map. An R-fator this low indiates a reasonably leanmap.)already given (the density map is onstruted from its frequeny domain rep-resentation). The spatial map of the �ltered density is then omputed (FFT)and sanned for peak �lter responses. Cowtan's approah radially optimizesan earlier exhaustive searh algorithm due to Kleywegt and Jones [20℄. Whilestill exhaustively searhing all possible translations and orientations of thehelix, it speeds things up by avoiding a onvolution for eah orientation-translation pair.We approah the problem di�erently. Features (triangles) in the power shapedetermine positions and orientations whih are heked for mathes withthe fragment. This uts down the spae of transformations examined, butrequires omparing the data with the fragment under every transformationsearhed. In this paper we demonstrate that this approah an suessfullyloate �-helies at moderate resolutions. It remains to be seen if it an do somore eÆiently than the frequeny domain approah, in general or in somesigni�ant sublass of problems.Computation of isosurfaes and skeletonization are usual steps in the manualmap interpretation proess. Existing programs, inluding O [6℄, MapMan [14℄and dm skeletonization �nd one-dimensional skeletons using a voxel-basedthinning algorithm, proposed by Greer [5℄ in 1974. The skeleton is used to3



help identify the main hain of the protein during manual model building.A di�erent skeletonization proedure was proposed by Leherte et al. [8, 9℄.They onstrut a topologial network on the set of ritial points of themap, resulting in a sparser 1D skeleton (ours is a denser 2D skeleton). Theyhave had some suess in using this skeleton to identifying �-helies at 3�Aresolution (thus, omparable to this work), but it seems unlikely that itwould extend to muh lower resolutions beause the number of ritial pointsdereases with the map resolution.There is some quite impressive work on the ompletely automati determi-nation of the entire 3D struture from di�ration data. The wARP systemof Perrakis et al. [10℄ has been suessful with density maps in the 1-2.5Angstrom range. Their approah is based on the `dummy atom' method ofLamzin and Wilson [7℄ for phase improvement. A di�erent approah wastaken reently by Wang [11℄, who employs a branh-and-bound algorithm inonformation spae.3 Skeletonization with the medial axisWe begin by desribing the power shape onstrution. The power shape wasdevised as an approximation of the medial axis of a three-dimensional solid,a di�erent kind of skeleton from that approximated by the one-dimensionalskeletons used in urrent systems. Medial axes are somewhat more expres-sive, and might be of independent interest for visualization and other shapeanalysis tasks.
Figure 2: On the left, the medial axis of an objet is formed by the enters ofthe maximal balls ontained in the objet. In three dimensions, the medial axis istwo-dimensional. On the right, the power shape approximates the medial axis bythe enters of a �nite set of balls. In three dimensions the power shape is madeup of triangles.The medial axis: Given a losed surfae F , we say a ball B is empty (withrespet to F ) if the interior of B ontains no point of F . A medial ball isa maximal empty ball; that is, it is not ompletely ontained in any otherempty ball. The medial axis is de�ned as (the losure of) the set of the entersof the medial balls. In general, the medial axis of a three-dimensional solidis a two-dimensional surfae. 4



Given the medial axis and the radius of the maximal empty ball for ev-ery point of the medial axis, the surfae an be reonstruted perfetly. Inthis sense the medial axis ontains more information than a one-dimensionalskeleton ould. For example, big side-hains like tryptophan usually showup as attened blobs in the isosurfae at 3 �A. The medial axis of suh ablob is roughly a disk, while the medial axis of a tubular region is loser toa one-dimensional urve.Power shape: Computing the exat medial axis of a three-dimensionalobjet is diÆult. We approximate the medial axis - an in�nite union ofballs - by a �nite union of balls using the Voronoi diagram. To onstrutthe �nite union of balls approximating the in�nite set of medial balls, wesample the surfae and ompute the Voronoi diagram of the sample set. Weselet a set of verties of the Voronoi diagram far from the sample set asour approximate medial axis points. We disover the adjaenies of thesepoints using the power diagram, an kind of weighted Voronoi diagram. Theresulting polygonal struture is the power shape. A detailed desription ofthe onstrution, and an analysis of its quality as an approximation of themedial axis, as a funtion of the quality of the sample set, an be found inour papers [1℄, [2℄.To sample an isosurfae from a density map, we extrat a set of verties usingthe marhing ubes algorithm [15℄ as implemented in VTK [16℄. We use theverties of the isosurfae to ompute the power shape. When the density mapis given on a sparse grid, marhing ubes returns a sparse sample from theisosurfae and the resulting power shape is very rough. Choosing more sam-ples from the isosurfae, using a smooth interpolant of the marhing ubesverties gives power shapes whih do a muh better job of approximating themedial axis; see Figure 3.Simpli�ation of the power shape: Unfortunately, the medial axis tendsto be ompliated-looking and unstable with respet to its input. Smallperturbations on the surfae introdue large \spikes" in the medial axis. Onthe other hand, portions of the medial axis indued by big shape features arequite stable and give a good approximate desription of the shape.To isolate the stable portions, we de�ne a noise threshold �, and de�ne an un-stable medial axis feature as one that might disappear if the surfae were per-turbed by �; note that suh a perturbation might indue topologial hangesin the objet. The feature is in danger of disappearing if the points on thesurfae to whih it orresponds are within distane � of eah other. To elim-inate suh features, we remove any ball whih touhes the surfae at pointsthat are within distane �. The remaining balls may still be very redundant.We therefore remove balls whih are almost ompletely overed by otherballs, using a greedy algorithm, desribed in more detail elsewhere [1℄.The net e�et of this simpli�ation proess is to produe a two-dimensionalskeletonization whih reets only large shape features. In Figure 3, weshow the power shape of an isosurfae for two di�erent values of �, one whihmerely removes quantization noise and another whih eliminates many shape5



Figure 3: Upper left, the power shape alulated from a dense set of points on thesmoothed isosurfae (omputed by applying two subdivision steps to the output ofthe marhing ubes algorithm), and simpli�ed to remove quantization noise. Thispower shape forms a good approximation of the medial axis of the (transparentblue) isosurfae. Upper right, the power shape we atually use, alulated diretlyfrom the lower resolution marhing ubes output. Lower left, removing parts ofthe power shape of the smoothed isosurfae (ie. upper left) orresponding to smallshape features leaves a skeleton very like the moleular bakbone. Lower right,one-dimensional `bones' skeleton, omputed with MapMan.features, leaving only the largest.4 Searh proedureOur algorithm for reognizing �-helies in the power shape is a variant ofgeometri hashing [12℄. Geometri hashing is a general tehnique for objetreognition in omputer vision. We will review geometri hashing then ex-plain the speed-ups we an ahieve in this speial ase by using the powershape.Geometri hashing: The input to geometri hashing is a model M (eg. ahelix) and a sene S (eg. the power shape), both represented as sets of points,and set of transformations T whih might be applied to M . The output isa mathing of portions of the sene with the model. The algorithm onsistsof a pre-proessing phase, whih only uses M , and a run-time query phaseomparing S and M . Multiple models an be onsidered simultaneously,with little additional time required in the run-time query phase.The ruial observation that makes geometri hashing work is that we an6



express the oordinates of the points in the model M in a basis B de�nedby a onstant number of points of the model, so as to be invariant under theset T of transformations.For instane, if T onsists just of translations, it suÆes to onsider any pointp 2 M as the origin of the set B of basis vetors. In that simple ase, wemath M to S as follows. Choose a point p in the model as the origin ofoordinate system given by B. Use the oordinates of eah point of M , withrespet to B, as the index of an item in a hash table H. This ompletes thepre-proessing phase. In the query phase, for eah point q in S, use q as theorigin for a basis B. If q is a point in the sene suh that translating p toq mathes M with a subset of S, orresponding points in the sene and themodel will now have the same oordinates. We look up eah point in S inthe hash table H; if it �nds a orresponding point of M , we ount one `vote'for this translation. If the number of votes is equal to the number of pointsin M , we onlude that is a math, and we output the translation.To be useful in most settings, the requirements for a math have to be relaxedsomewhat to aommodate error. First, the points of M and S might notmath exatly. This is solved by rounding the oordinates used to index andlook up items in the hash table. It might be that some points of M arenot mathed by points of S. In general this an be solved by requiring thenumber of votes to be at least a �xed perentage of the number of points inM . But if the point q orresponding to the orret origin is missing from Sthen the entire math is missed. This is solved by storing the oordinates ofthe model points inM with respet to every origin p 2M into the hash table.Votes are ounted separately for eah hoie of p; translations mathing pairsp 2 M; q 2 S whih reeive many votes are output. Note that although thehash table gets larger, the number of hash-table lookups in the run-timequery phase remains the same.Finally, there are some obvious optimizations. Using the relaxations de-sribed in the previous paragraph, every transformation mathing M to asubset of S will be found multiple times. One a math is found, the orre-sponding points of S an be eliminated from further onsideration. Also, ifM is small (geometrially) with respet to S, only points of S near q needto be looked up in the hash table.Our algorithm: In our ase, we used 80 points distributed along a two-turnsegment of an ideal �-helix bakbone as the modelM and the verties of thepower shape as the sene S, and the rigid motions (rotation and translation)as the set T of transformations. The preproessing step involves building thehash table H. For this set of transformations we need three non-ollinearpoints to de�ne a referene frame. Given model points x1; x2; x3, we let x1be the origin and de�ne the three orthogonal basis axes by by the vetorsv1 = n( ~x2 � ~x1)v2 = n( ~x3 � ~x1 � (( ~x3 � ~x1) � v1)v3 = v2 � v17



where n() represents normalization. Eah non-ollinear triple of points in the�rst turn of our model helix is used to onstrut a basis and the oordinatesof all the points inM are expressed in this basis and stored in the hash table.This preproessing step needs to be done only one, for the partiular helixmodel. Note that sine order matters, every three points need to be taken ineah of six permutations.We use some observations about the struture of power shapes of heliesin density maps to speed up the run-time query phase. First, helies tendto be dense, so that the parts of the power shape belonging to a helix areontained in a single onneted omponent of the power shape. And seond,beause they are tightly wound, helies tend to ontain rather large trianglesspanning urves or even entire turns of the helix.In generi geometri hashing, all triples of power shape verties are tried asbases. But sine only one triple from a partiular helix in the sene has tobe hosen for the helix to be found, and any helix in the sene has manytriangles spanning three of its verties, we limit our attention to triples ofpoints whih form triangles in the power shape. The verties of eah triangleonly have to be onsidered in one order, sine the basis aording to eahpermuation was used to reate entries in the hash table. For eah triangle,we use the the onnetivity of the power shape to selet a subset S 0 of thepower shape verties in the neighborhood of the basis triangle. We perform abreadth �rst traversal of the graph formed by the power shape edges, startingat the basis triangle. We stop either when we have exhausted the onnetedomponent or at most a onstant number  (we use  = 200) of verties havebeen reahed. We then look up only these  points in the hash table H.Finally, when a math is found, we try to label as many power shape vertiesas belonging to the helix as possible. When a basis is suessful, meaningthat at least one model-basis pair reeives many votes, we expand the set ofpower shape verties onsidered using another breadth-�rst searh, and lookthose up in the hash table as well.This results in the following algorithm:For eah triangle t in the powershape do:1: Let B be the orthonormal basis de�ned by the verties of t2: Starting at the verties of t obtain the neighborhoodof t by breadth �rst traversal . This neighborhood forms S 0 � S.3: Compute the oordinates of all verties in S 0 with respet to basis B.4: Look up eah vertex in S 0 in the hash tableand vote for (model,basis) pairs.5: If the number of votes for a given (model,basis) pairis above a threshold:a: Label all verties that voted for this transformation as part of a helix.b: Expand the set S 0 by breadth-�rst traversal and label as many new points as possible.
8



5 ResultsThe input �les for the run-time query phase were power shapes for the yMTDenzyme shown in Figure 1 and the barley hitinase shown in Figure 4, on-taining respetively 14,692 and 80,542 verties and 144,420 and 203,774 tri-angles. We visually ompared the sets of power shape verties labeled asbelonging to helies with the models of the moleular bakbones onstrutedby the hemists, with the heliies on the bakbone labeled by the DSSP al-gorithm [13℄. We found that some of the power shape verties around eahof the helies in eah moleule were labeled, exept for a single-turn helixin the hitinase moleule (a twist in the hitinase bakbone is erroneouslylabeled as helial by DSSP; our algorithm did not label any verties in thatarea). We also labeled a few `false positive' regions near short urves in thebakbone. In the images, there appear to be many `false positives'. Thisis beause eah density map ontains parts of several moleules whih arenear the entral moleule in the rystal. Most of the labeled verties whihdo not appear to be near helies in the bakbone are near helies in theseother opies of the moleule. About 35% of the verties of the yMTD powershape were labeled as belonging to helies and about 11% of the verties inthe hitinase power shape.The run-time query phase of the algorithm as desribed in the previous se-tion required about 2 hours and 15 minutes on the hitinase and about 2hours for the yMTD. This large running time is mostly spent searhing largeportions of the power shape that do not represent a helix.Reall, however, that only one basis de�ning a math for the helix in the senemust be found, and many bases are generally found for eah helix, so it shouldbe possible to skip some andidate bases and still �nd every helix. A ommonoptimization in geometri hashing is to randomly hoose a small subset ofbases to try. Here, we hose instead to heuristially eliminate triangles thatare very small (assuming that the tightly-wound helies almost universallyontain long triangles) and those that were numerially unsuitable as bases.Using about 30% of the triangles in the hitinase power shape redued therunning time to 40 minutes with no appreiable di�erene in the quality ofthe output, as shown in Figure 4.We also onsidered a di�erent heuristi, eliminating triangles from onsider-ation if eah of their verties belonged to another triangle whih had alreadyformed a basis. This redued the running time even more, but seemed harderto justify.6 DisussionThere is a lot of potential here for further work. We have demonstrated that�-shapes an be found in density maps at moderate resolution by examining askeletal representation. We are urrently engaged in further experimentationwith this implementation, inluding randomly hoosing bases, experiments9
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Figure 4: The output of the basi, and an optimized version of the algorithm, on adensity map for the barley hitinase protein. The power shape verties labeled asbelonging to helies are shown, along with the moleular bakbone as reonstrutedby the hemists with the helies hilighted. We fail to loate any helial points neartwo short regions labeled as helial in the bakbone; the one at the upper leftwas not onsidered helial by the hemists either. Again, there are many pointsdistributed on helies on other opies of the moleule in the rystal, as well assome false-positives near non-helial regions on the bakbone. The input densitymap was at 3.5 �Aresolution.
12


