
Virtual Integration of Cyber-Physical Systems by Verification

Panagiotis Manolios
Northeastern University

pete@ccs.neu.edu

Vasilis Papavasileiou
Northeastern University

vpap@ccs.neu.edu

Abstract—In this position paper, we advocate the use of
verification technology to tackle the virtual integration problem
for cyber-physical systems. In particular, we advocate the
use of high-level modeling languages that allow designers to
declaratively specify what properties their architectural models
should have, not how to achieve them. We further advocate
the use of verification technology to analyze such models,
in particular to synthesize concrete architectural models that
certifiably satisfy all properties. We discuss our work in this
direction and outline some of the challenges. Specifically, we
show that virtual integration in the presence of real-time
scheduling constraints leads to problems that cannot be dealt
with in a compositional manner. They can, however, be handled
in a semi-compositional fashion, as we outline in this paper.

I. INTRODUCTION

The design of cyber-physical systems is an increasingly
important problem. Cyber-physical systems use software to
interact with and exert control over the physical world.
Examples abound in the aerospace, automotive, and medical
fields. Cyber-physical systems tend to consist of many inter-
acting, complex components that share resources and operate
under real-time constraints. Their design and development
often involves large teams working for many years. Design
flaws routinely remain undiscovered until integration testing,
at which point they are prohibitively expensive to deal with.
The idea of virtual integration testing is to analyze models
of cyber-physical systems before they are built, in order to
find and correct design flaws as soon as possible.

In this position paper, we propose tackling the virtual
integration problem for cyber-physical systems by using
verification technology. More specifically, we propose using
declarative high-level models, from which more traditional,
architectural models can be synthesized, using verification
technology. The synthesized models will come with a cer-
tificate showing that they satisfy their architectural-level
properties.

Currently, the highest level models used are architectural
models. Such models describe the high-level structure of
a system, which includes a set of components interacting
through their connectors. Several architecture description
languages (ADLs) have been developed to describe and rea-
son about architectural models. Examples include AADL [5]
and ACME [6]. Medvidovic and Taylor have written a
survey on architecture description languages [9]. Notice

that in an architectural model, one has to explicitly specify
component connections.

A point of departure from current methods, is that we
insist on the use of a declarative high-level modeling lan-
guage. The reason is that it is crucially important to have
analyzable, formal models as early as possible in the design
cycle. The gap between declarative high-level models and
architectural models can be significant, representing multiple
person-years of effort. We use verification technology to
enable designers to automatically synthesize architectural
models that certifiably satisfy their design specifications.
Not only does our approach relieve the designers from the
multi-year effort to define an architectural model, but, more
importantly, it allows designers to get immediate feedback
on their designs, allowing them to more fully explore the
design space, to find design flaws early, and, thereby, to
design superior cyber-physical systems.

The rest of the paper is organized as follows. In Section II,
we describe the CoBaSA language, a high-level declarative
language along the lines we have been proposing. We have
used CoBaSA to solve what we call the system assembly
problem: from a sea of available components, which should
be selected and how should they be connected, integrated,
and assembled so that the overall system requirements are
satisfied? [8] Section II includes a simple, representative
example designed to give a sense of what is involved in
using CoBaSA to synthesize architectural models. CoBaSA
works by transforming the system assembly problem into a
satisfiability problem, that is then handled by a verification
tool. Why is this not the end of the story? Well, one of
CoBaSA’s major limitations is that it cannot handle real-
time scheduling constraints. In Section III, we describe static
cyclic scheduling, which is non-preemptive and quite diffi-
cult to satisfy. In Section IV, we show that the combination
of the system assembly problem and the scheduling problem
cannot be solved in a compositional way, and outline a semi-
compositional approach to solving the problem. Conclusions
and directions for future work are given in Section V.

II. SYSTEM ASSEMBLY

The CoBaSA system, as described in [8], allows us to ex-
press architectural constraints between components and au-
tomatically synthesize architectural models that satisfy these
constraints. CoBaSA provides an object-oriented language



for describing the structural properties of the components,
and mechanisms for imposing constraints on how these
components will inter-operate. In this section we provide
an introduction to the CoBaSA language. To this end, we
use as an example an architectural model from the aerospace
domain and terms consistent with the ARINC standards 651-
1 and 664-7 [1].

The basic datatypes in CoBaSA are integers (bounded or
arbitrary precision), Booleans, and strings. CoBaSA entities
correspond to classes in an object-oriented programming lan-
guage. Entity inheritance is supported. Data can be organized
in single- or multi-dimensional arrays.

Resource allocation is the main objective of the CoBaSA
system. We think of the resource allocation problem in
terms of mapping resource consumers to resource providers.
CoBaSA objects can consume resources, or provide re-
sources, or both. In our model, resource providers are
processors that provide CPU time, RAM and other re-
sources. Processors reside in different locations "Loc1", . . .
"Locn". Our consumers are jobs (or hosted functions) and
global memory spaces with certain resource requirements.
The corresponding CoBaSA entities are:

entity processor {
; id STRING
; location STRING
; cpu-time-available 1000000
; nvm-memory-available 16384
; ram-memory-available 131072
; rom-memory-available 65536
; no-of-rx-vls-available 384
; no-of-tx-vls-available 128
; rx-vl-bandwidth-available 100000
; tx-vl-bandwidth-available 100000

}

entity job {
; id STRING
; location STRING
; rate INT
; cost INT
; cpu-time-req INT
; nvm-memory-req INT
; ram-memory-req INT
; rom-memory-req INT

}

entity gms {
; id STRING
; nvm-memory-req INT
; ram-memory-req INT
; rom-memory-req INT

}

The processor entity has an identifier, a string corre-

sponding to the location where the processor resides, and
fields for the resources provided: CPU time, different kinds
of memory (non-volatile, RAM, and ROM), the number of
virtual links the processor can receive and transmit, and the
bandwidth available for the incoming and outgoing virtual
links. Since all processors in this model are homogeneous,
all the fields corresponding to resources have default values;
thus, we do not have to define them when instantiating the
entity.

The job entity has fields for the ID, the location of the
job (a set of locations, as above), the rate and cost (how
many times per second the job is executed, and how long
each such execution lasts), the total CPU time requirement
(the product of rate and cost), and the different memory
requirements.

The entity gms has fields for the ID and the memory
requirements of each global memory space.

We define instances of the above entities as follows:

var
; processor P_1 =

{; "P_1" ; "Loc1" ; ; ; ; ; ; ; ;}
; job J_1 =

{; "J_1" ; "Loc1" ; 20 ; 8750
; 175000 ; 64; 8192 ; 4096}

; processor[4] processors-Loc1 =
[P_1, P_2, P_3, P_4]

; job[64] jobs-Loc1 =
[J_1, J_2, ..., J_64]

In this example, we defined a processor with id "P_1" and
location "Loc1" that has default values for the remaining
fields, and a job with id J_1 that can be mapped to proces-
sors at location "Loc1" and has the resource requirements
shown. We also defined an array of 4 processors whose
location is "Loc1", and an array for the 64 jobs that can be
mapped to them. Separate arrays are used for the processors
at different locations and the jobs that can be mapped to
them. For jobs can be mapped to multiple locations, we
have yet another array.

CoBaSA maps are functions from resource providers to
resource consumers. A map constraint relates two arrays,
which we call the domain and the range of the map.
CoBaSA actually supports more expressive syntax, where
domains and ranges include a set of arrays of objects, but
we will focus on simplicity. Each component in the domain
is mapped to exactly one component in the range. The
following definition maps jobs to processors:

map jobs-to-procs-Loc1
jobs-Loc1 processors-Loc1

constraint jobs-to-procs-Loc1
((cpu-time-req,

nvm-memory-req,
ram-memory-req,



rom-memory-req))
((cpu-time-available,

nvm-memory-available,
ram-memory-available,
rom-memory-available))

A map definition is usually accompanied by field constraints,
which relate resource requirements to resource availability.
In our model, we need the above four field constraints for
the CPU time and the different kinds of memory. According
to the first field constraint, the sum of the CPU time
requirements of the jobs mapped to a specific processor
cannot exceed the available CPU time in the processor.

The mapping of jobs to processors in the model is subject
to requirements like job separation (a pair of jobs have to
be mapped to different processors). For example:

for_all p in processors-Loc1
{(jobs-to-procs-Loc1(J_7, p)

implies
(not jobs-to-procs-Loc1(J_8, p)))}

The constraint above states that jobs J_7 and J_8 cannot
be co-located. The for_all statement was used above to
apply a constraint to a whole array. Map references indicate
whether an element in the domain of a map is mapped to an
element in the range: jobs-to-procs-Loc1(J_7, p)
is true if and only if job J_7 is mapped to processor p.
The usual logical connectives are provided. A separation
constraint as in the example above can be used to deal with
job replication requirements. For system reliability reasons,
we may need multiple copies of a job running on different
processors. We can deal with such constraints by defining
multiple jobs, one per instance, with the same values for
the resource requirements, and with associated separation
constraints.

We similarly encode job co-location constraints: such
constraints state that a pair of jobs have to be mapped to
the same processor.

The designer of a safety-critical system has to consider the
possibility of failures. Spare processors allow us to operate
safely in the presence of a limited number of processor
failures. In our architectural model, a set of processors per
location are considered spare processors. We are given sets
of jobs at most one of which can be mapped to a spare
processor. The jobs that do not appear in any of these sets
cannot be mapped to a spare processor. In our model, P_4 is
the only spare processor for location Loc1. The constraints
below state that at most one of the jobs J_36, J_48 and
J_52 can be mapped to a spare processor and that J_53
cannot be mapped to a spare processor.

(+ jobs-to-procs-Loc1(J_36, P_4)
jobs-to-procs-Loc1(J_48, P_4)
jobs-to-procs-Loc1(J_52, P_4))

<= 1

(not jobs-to-procs-Loc1(J_53, P_4))

Notice that in the example we added map references: in
CoBaSA, Booleans are treated as 0 or 1 when used in an
arithmetic context.

In some cases, a resource consumer has to be mapped
to more than one resource provider. In our architectural
model, multiple copies of global memory spaces are allowed.
This can happen if multiple jobs that reside on different
processors need read-only access to the same memory space.
In this case, each copy of the memory space consumes
resources from the processor it is mapped to. We define
a generalized map from memory spaces to processors:

gmap >= 1 gmss-copies-to-procs
gmss-copies procs

constraint gmss-copies-to-procs
((nvm-memory-req,

ram-memory-req,
rom-memory-req))

((nvm-memory-available,
ram-memory-available,
rom-memory-available))

The map above states that each memory space in the
gmss-copies array is mapped to at least one processor.
We have a separate array gmss and an associated map
for the global memory spaces that have to be mapped to
exactly one processor. In addition to the generalized map,
we need constraints that force a copy of the global memory
region to be co-located with a job that needs read-only
access to it. The map above also illustrates a case in which
resource consumers of different kinds (namely, jobs and
global memory spaces) share the same resources. CoBaSA
handles this correctly.

Other families of constraints that a safety-critical system
has to satisfy can be encoded with arbitrary Boolean vari-
ables and constraints on them.

The jobs in our architectural model communicate through
virtual links. Every link has a exactly one publisher, but
potentially multiple subscribers. The sum of the bandwidth
required for the virtual links that the jobs located on a
processor publish or subscribe to cannot exceed the avail-
able outgoing or incoming bandwidth of the processor,
respectively. In case two or more subscribers of the same
virtual link are mapped to a specific processor, we count the
incoming bandwidth of the link only once.

We encode the incoming virtual link constraints as fol-
lows. We use a Boolean variable to denote the fact that a
processor receives a specific virtual link. For example, jobs
J_12, J_25 and J_38 subscribe to the virtual link VL_1.
We define P_3-sub-VL_1 to be true if and only if at least
one of J_12, J_25 or J_38 is mapped to processor P_3:

(P_3-sub-VL_1 iff



(jobs-to-procs-Loc1(J_12, P_3) or
jobs-to-procs-Loc1(J_25, P_3) or
jobs-to-procs-Loc1(J_38, P_3)))

Our architectural model involves 110 virtual links. Each
processor has a limit on its incoming bandwidth, which is
100,000 Kbps. The incoming bandwidth requirements of the
virtual links VL_1, VL_2 and VL_110 are 8,000 12,000
and 16,000 Kbps respectively. Thus,

(+ (* P_3-sub-VL_1 8000)
(* P_3-sub-VL_2 12000)
...
(* P_3-sub-VL_110 16000))

<= 100000

In our model, virtual links are comprised of messages.
Jobs really need access to messages, not virtual links. There-
fore, the messages they need determine what virtual links
they subscribe to and they read only the subset of messages
they care about from the virtual links they subscribe to. Jobs
buffer a given number of bytes for each message, a number
that can differ among subscribers of the same message. Each
processor provides a single buffer for both message transmis-
sion and reception. The sum of the buffering requirements
for the messages that the jobs mapped to a processor publish
or subscribe to cannot exceed the capacity of the buffer.
When multiple jobs on the same processor subscribe to the
same message with different buffer requirements, the maxi-
mum buffer requirement is taken into account. Finally, each
hosted function that subscribes to a message uses either a
queue buffer, or a sampling buffer for it and hosted functions
that subscribe to the same message but use different buffer
types cannot reside on the same processor. The CoBaSA
framework is expressive enough to accommodate messages
with the constraints described above.

The CoBaSA framework is fully automated. The system
receives as input a program in the language we have de-
scribed and returns an allocation of resource consumers to
resource providers. The way the framework works is by
translating the constraints to a propositional Satisfiability
(SAT), pseudo-Boolean Satisfiability or Integer Linear Pro-
gramming (ILP) problem and calling an off-the-shelf SAT
or ILP solver. The generation of constraints involves some
novel ideas [2], [7]. The satisfying assignment that the solver
returns corresponds to a solution of the system assembly
problem. There is no clear winner as the backend solver
for system assembly problems: we have seen instances for
which SAT is better, pseudo-Boolean SAT or ILP is better.
Since we strive to offer a general framework, it is beneficial
to support all three.

CoBaSA can also be used in optimization mode, in which
we look for a solution that is optimal with regards to an
objective function. For example, we can use this feature for
load balancing: we can minimize the difference between the

minimum load among the processors and the maximum load.
Prior work [3], [4] has explored one- and multi-

dimensional bin-packing techniques for tackling the resource
allocation problem. However, we are not aware of any
methodology that allows automated synthesis of large-scale
architectural models like the one described in this section.
For example, resources like bandwidth cannot be treated as
bin packing dimensions, because multiple co-located jobs
subscribing to the same virtual link can share the bandwidth
cost. The CoBaSA Boolean and arithmetic operators provide
a very general way to express constraints, while resource
allocation algorithms based on bin-packing techniques may
have to be expanded each time a new class of constraints is
considered.

III. SCHEDULING

In this section we describe static cyclic scheduling, which
is non-preemptive and periodic. It is used in industry and it
happens to be a very demanding type of scheduling, which
has its advantages and disadvantages. The disadvantage is
that it is often very hard to determine if even relatively
small sets of jobs are static cyclic schedulable on a single
processor. The advantage is that static cyclic scheduling
provides very strong guarantees, which can dramatically
simplify the kinds of safety analyses often required for
safety-critical systems.

We now define the static cyclic scheduling problem. Time
will be divided into an infinite number of cycles, each of
s slots. A slot is the smallest interval of time we will
consider. For example, we might divide time into cycles,
each of which lasts for a second, consisting of s = 106

slots. In this case a slot corresponds to a microsecond. The
parameter s is really processor-dependent. If we have a
collection of heterogeneous processors, then we can account
for their different rates of speed by setting their s parameters
appropriately.

Jobs will be denoted by a pair (r, c), where r is the rate
of the job and c is the cost. We require that for any job
(r, c) that is to be scheduled on a processor with s slots per
cycle, that r divides s. For example, if a cycle corresponds
to a second and s = 106, as above, then r = 100 is allowed,
whereas r = 7 is not. Given a multiset of jobs, a schedule
is simply a starting time (slot) t for each job such that t < s
and no two jobs occupy the same slot. The slots occupied
by a job are slots of the form t + k s

r + i, for k a natural
number and 0 ≤ i < c. That is, if a job is scheduled to start
during slot t, then it occupies c consecutive slots starting
with slot t and this process repeats at slot t + s

r , t + 2 s
r ,

etc. For example, if a cycle corresponds to a second and
s = 106, as above, and (r, c) = (100, 5), then once the job
starts, it has to be scheduled every 1

1000

th of second for 5
106

consecutive seconds each time.
Given a multiset of jobs, the uniprocessor static cyclic

scheduling problem is to determine whether there exists a



schedule. This problem is NP-complete, as is the multipro-
cessor version of the problem.

IV. SEMI-COMPOSITIONALITY

The question we address in this section is: what if we
have a model that includes both the kind of system assembly
constraints we saw in Section II and the kinds of scheduling
constraints we saw in Section III? Do we need a com-
pletely new way of dealing with the combination of these
constraints, or can we compose the verification algorithms
we use for solving the system assembly problem with the
scheduling algorithms used for static-cyclic scheduling?

Unfortunately, we cannot simply run one algorithm after
the other. To see this, consider the following simple multiset
of jobs:

{j1 = (2, 1), j2 = (3, 1), j3 = (3, 1), j4 = (6, 1)}

where j1 and j2 must be co-located and j2 and j3 must be
separated. In addition we have two processors each with 12
slots. If we solve the system assembly problem, a possible
solution is to map j1, j2, and j4 to processor 1 and j3 to
processor 2. Unfortunately, this allocation is not schedulable.

If, instead we try to schedule the jobs first, then we might
wind up with j1 and j4 on processor 1 and j2 and j3 on
processor 2. Unfortunately this does not satisfy the system
assembly constraints.

What this example shows is that we cannot solve the
problem in a compositional way.

This conclusion may seem surprising in the light of pre-
vious research results that achieve task resource allocation
and scheduling with the same algorithm [3], [4]. How-
ever, the scheduling policy in these cases is rate-monotonic
scheduling. Rate monotonic schedulability is guaranteed, if
the load does not exceed certain bounds. The models we
deal with have CPU utilization over 90%, which is well
above any limit that guarantees schedulability. Under these
circumstances, rate-monotonic scheduling can still be done
compositionally in practice. However, static cyclic cannot.
Thus it is impossible to treat CPU time as any other resource
and a separate decision procedure is required.

The best we can hope for is a semi-compositional ap-
proach where we use the same algorithms as before for
solving the system assembly problem and the scheduling
problem. However, the algorithms are now part of a frame-
work that enables them to interact in a way that allows us
to solve the combined problem. We are experimenting with
various approaches that are motivated by work from the
verification community on combining decision procedures.

V. CONCLUSIONS AND FUTURE WORK

We advocated the use of verification technology to tackle
the virtual integration problem for cyber-physical systems.
The idea is to use high-level modeling languages that allow
designers to declaratively specify what properties their archi-
tectural models should have, not how to achieve them. From
such high-level models, we proposed to use verification
technology to automatically synthesize architectural models
that certifiably satisfy the high-level properties. One of the
challenges is dealing with virtual integration in the presence
of real-time scheduling constraints. While this problem is
inherently not compositional, we advocated the use of semi-
compositional methods.

ACKNOWLEDGMENT

We are indebted to John Chilenski of Boeing Commercial
Airplanes for providing extensive guidance, support, feed-
back, and collaboration. This research is funded in part by
NASA Cooperative Agreement NNX08AE37A.

REFERENCES

[1] ARINC. ARINC specifications and reports. See
https://www.arinc.com/.

[2] B. Chambers, P. Manolios, and D. Vroon. Faster SAT solving
with better CNF generation. In DATE, Design, Automation and
Test in Europe, pages 1590–1595. IEEE, 2009.

[3] D. de Niz and P. H. Feiler. On Resource Allocation in
Architectural Models. In ISORC, 2008.

[4] B. Dougherty, J. White, J. Balasubramanian, C. Thompson,
and D. C. Schmidt. Deployment Automation with BLITZ. In
ICSE, 2009.

[5] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture
Analysis & Design Language (AADL): An Introduction, 2006.

[6] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural
Description of Component-Based Systems. In G. T. Leavens
and M. Sitaraman, editors, Foundations of Component-Based
Systems, pages 47–68. Cambridge University Press, 2000.

[7] P. Manolios, S. K. Srinivasan, and D. Vroon. BAT: The Bit-
Level Analysis Tool. In Computer Aided Verification, CAV,
volume 4590 of Lecture Notes in Computer Science, pages
303–306. Springer, 2007.

[8] P. Manolios, D. Vroon, and G. Subramanian. Automating
component-based system assembly. In ISSTA, pages 61–72.
ACM, 2007.

[9] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.


