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Pervasiveness of Wireless Systems

* Beyond providing user information and data
services:
o Air-traffic control
o Power grids
o Transportation systems
o Human body |mplantable devices
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Jamming Threats
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WiFi Jammer

Who is putting up ‘interceptor’ cell towers?
The mystery deepens
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September 2, 2014 2:58 PM Mysterious “Interceptor” cell towers in the USA are
Sarry Leving phone calls — but they're not part of the phone ne
And, Two experts told VentureBeat today, the towe
appear to be projects of the National Security Ager
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Software-defined radio

Magnetron

FCC fines Marriott $600,000 for Wi-Fi blocking
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Marriott International will pay $600,000 to resolve a
Federal Communications Commission investiganon
nto whether a hotel's employees blocked customers
from using their personal Wi-Fi networks and then
charged them to use the hotel network.



Focus

" High-Power Jamming

" Crippling Jamming

" Multi-Carrier Jamming
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High-Power Jamming

=  Powerful interference

= High coverage (hundreds of meters)

= Strong (1KW >> WiFi signal = max. 20mW)
= Low cost

[Pacholok89]
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Crippling Jamming

= Degrade system performance with low jamming power
= Hard to be detected

= Attack on link rate adaptation:

o Higher bit rate, higher probability of error = higher jamming efficiency
Low-rate transmission link = network congestion
Attack [NRST'11] causes rate adaptation algorithms to use basic rate (1Mbps)
Theoretical analysis [0S’12] shows an effective jamming rate as low as 5%
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Jamming in Multi-Carrier Communication Systems

" Multi-carrier communication systems are popular today

: ,‘;\§ (ze) Ite

" Previous work: Jamming on

o Preamble (frequency offset attacks)
o Pilot subcarriers
o Control channels (LTE, GSM)

= Qur study: Jamming on Wi-Fi communications
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. SDR for High-Rate Wi-Fi Analysis

. Multi-Carrier Jamming on Wi-Fi Communications
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Previous Work

" Directional antennas, phase array antennas: high
cost, more appropriate for radar systems

" Uncoordinated spread spectrum [PSC'10]: lower
transmission rate

PAVE PAWS

= MIMO: require training sequences (cooperative)

» Full-duplex wireless communications, Ally friendly
jamming are designed for extracting known signal
rather than unknown jammers
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Our Approach

= Steerable and separable two-element receive antenna
(28dB)

user signal’s power

Two-element
. antenna

jamming signal’s power
o Antenna auto-control HJ
o Location awareness not required

= Digital Jamming Cancellation
(20dB)

o Additional single-element antenna
o Requires no training sequences

o Removes and jamming Single-element

= Two stages: 48dB antenna

June 9, 2015 Ph.D. Thesis
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Receive Pattern
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Antenna Control Diagram
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Digital Jamming Cancellation

" Goal: increase anti-jamming capability beyond 28dB

= Approach:
o Use an additional single-element antenna
o Extract original data signal from 2 received signals

h Receiver
sl . feedback

control

Sender he, T T P
- 1st stage
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data
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Anti-jamming Performance: DBPSK and DQPSK
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Rate Attacks

" Jamming attack on rate adaptation:
o Target to high-rate packets
o Low-rate transmission links block other communications
o Degrade whole system’s performance

= Reason: Adversary knows the rate information

- needs to hide the rate



Rate Detection

= Explicit:
o Rate exposed in protocol’s public N .
. . \4. '.{ \ :.c‘ I
header (Wi-Fi, LTE, ...) A Y BRI e
: .:’a- :z ::Ql ~e,
" |mplicit: £ A S~ S Rl
. . : | IR
o Modulation guessing: by analysis of . oa e s
. . o‘:. R : | %t a8
received complex samples (in-phase . |;5|< 6 Q'AM
and quadrature components) Modulation guessing
o Code guessing: by analysis of Q
4

received complex samples and . .
tracking maximum likelihood ‘ \

L (O I . S I
symbol sequences : v

Code guessing
(code transitions can be traced)
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Challenges of Rate Hiding

" Encrypting Header:
= No explicit rate exposing
® Suffer from implicit rate detection

= Use only one rate:

= No rate information lost

® Loss of efficiency (always lowest rate)
= Modulation Unification [RK’14]:

= Conceal modulation

® Sacrifice of resiliency due to shorter
symbol distance

= Applying Binary Error Correction Codes:

= Good for BPSK and QPSK

® Robustness not guaranteed for higher-
order modulations

® No protection against code guessing

June 9, 2015 Ph.D. Thesis
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Goal and Approach

= Goal:

o Prevent explicit exposing rate, modulation guessing, and code guessing attacks

o Boost resiliency at the same time with rate concealing

=  Approach: We develop:

Encoder T Radio
~~oisy,
[o100.. GTCM Encoder > Crypto. Interleave Mg,
anng
Decoder
. Corrected 2-Pass
0100.. |= Crypto. Deinterleave :
< GT|CM Decoder yp Decoding
Feedback

o Generalized Trellis Coded Modulation:
= Counter modulation guessing: use highest-order modulation

= Boost resiliency: Generalize TCM codes

o Cryptographic Interleaving:

= Rate is not explicitly exposed

= Counter code guessing

S

RX Radio

o Two-Pass Decoding: soft pre-decoding re-encoding for improved phase correction

June 9, 2015
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Trellis Coded Modulation

= TCM is a convolutional code of rate k/(k
+1) designed specifically to higher-order

modulation -

=  Maximize Euclidean distance between

coded symbol sequences <

o Binary codes are designed to maximize

Transmitted

9

Hamming distance

=  Coding gain depends on minimum

distance between sequences of coded 1

symbols ,
o Uncoded modulation: minimum distance

between individual symbols 5

=  Heuristic code search: Set partitioning
and design rules = regular/uniform 3

mapping

June 9, 2015 Ph.D. Thesis

TCM code

symbol
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Generalized TCM Codes

- conceal any modulation into any higher-order modulation

- larger class of codes. We found some better codes

o Heuristic: but based on set partitioning and design rules
1. Generate a random code mapping
2. Check validity of generated code

3. Check coding gain: Compute free distance of code
* Involves distances between pair of paths that diverge and remerge

* Running time: < 2ms per code

June 9, 2015 Ph.D. Thesis
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GTCM vs. Binary codes
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Applying binary codes can result in less resiliency than uncoded modulation
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Cryptographic Interleaving
= Why Cryptographic Interleaving?
o GTCM does not conceal codes

o Encryption baseband symbols amplifies errors exceeding decoding
capability

= Qur approach: Cryptographic Interleaving

el > GTCM
= Encoder

(OI 1I213I415I6l7)

\ 4

(7I6I5I4I3l2I 1'0)
Interleave

— GTCM
hello” <—
Decoder

(X,1,2,3,4,5,6,7)

A

i (7,6,5,4,3,2,1,X)
Deinterleave

June 9, 2015
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Interleaving Process

l-.‘ P
PR T, : S
! N T A RECI

plvcs’sea  RITT T

encrypted + robust | symbol block 1} symbol block 2,
T T T hedulation T~ T T T~~~ ¢rypto.|nter|eave ————— >

" |ndistinguishable interleaving function:

y=Ax+ B modm x: index of symbol before interleaving
A =h(K]|s|i]0) mod (m-1) + 1 y: index of symbol after interleaving

_ m: block size, i: block index
B =h(K]|s|i]1) mod m s: packet sequence number

K: shared secret

o Requires 2 hash operations per block

" Concealing Header:
o Encoded with fixed robust coding scheme
o Encrypted using AES-CBC: AES-CBC, (MCS|SEQ]...|R)
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System Impairments in Low SNR

= Performance drop with practical implementation and
evaluation

= Reason: regular synchronization and correction techniques for
frequency and phase offsets perform poorly in low SNR:
— introduce more errors than decoder’s correction capability

= This is also a reason communication systems today still use
low-order modulations (eg. BPSK) as a fallback mode to adapt
to the environment

June 9, 2015 Ph.D. Thesis 26



2-Pass Decoding

= Soft pre-decoding re-encoding

= Phase tracking: correction based on re-encoded symbols (skip wrong
symbols)

Received
samples

Pre-decoding

Crypto.
Deinterleaver

GTCM Decoder

Re-encoding

Phase Tracking

Crypto. Interleaver GTCM Encoder

Final decoding

Crypto.

. GTCM Decoder Data
Deinterleaver
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BER

BER

Simulation

Concealing BPSK

Results

Concealing QPSK
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Experimental Results
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Motivation

= GNU Radio is currently the most popular Software Defined
Radio (SDR) platform, but:

o Still lacks good Wi-Fi implementation
o Some previous efforts (gr-ieee802-11) do not support full rate (only
PSK modulations)

= Other existing platforms (WARP, Sora):
o More expensive (WARP: $4,900+, Sora: $3000+)

o WARP: custom development is more dependent on specific hardware
and architecture (constrained to the FPGA capabilities)

o Sora: still at pre-mature stage



SWiFi - Our goal

= Develop Wi-Fi radio on GNU Radio
» Compatible with general RF front-ends (e.g., USRP)
» Re-use as much as possible GNU Radio supports

= Current status:

o Broadcast transmitter and receiver with support for IEEE 802.11a/g
full rates (up to 54Mbps)

o At every point in the transmit and receive chain, allows information
extraction (e.g., for fingerprinting, etc.) or injection (e.g., covert
channel)

o All signal processing functions are written in purely C++
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SWiFi Receiver Design

! AGC,

Filter

V%

Demodulator

OFDM symbol demodulation

Channel

Estimator

Equalizer

FFT e

CP
Remover

Sync.
Clock
Recovery

_________________________________________________

Convolutional
Decoder

_____________________________________
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Channel Estimation and Equalization

= Preambled-based frequency offset correction
o Coarse estimation: using short preamble symbols
o Fine estimation: using long preamble symbols

= |nitial channel estimation: using long preamble symbols

= Update channel:
o Phase correction using pilot subcarriers

o Decision-directed update: demodulate symbol = compute mean squared
errors = remove large errors = update by averaging over previous channel

states
Time domain |
10x Short| 2xLong | O 1 2 / n
< preamble —>< OFDM symbols (payload) >

Frequency domain

| = 8
| | Data| § = Data Data | |& Data
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Received Throughput (Mbps)
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Throughput Comparison (Wireless Setup)
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Wi-Fi Transmit Chain
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Interleaving Mechanism

* Dividing coded bit sequence (Convolutional Encoder’s output)
into multiple same-size groups

June 9, 2015

Two rounds of permutation within each group

Ph.D. Thesis
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Interleaving Mechanism

" First-round permutation: scatter adjacent coded bits
o Each group divided into 16 subgroups
o Bitj of subgroup i moved to bit i of subgroup |

\\\ i 7/

1 //

June 9, 2015 Ph.D. Thesis
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Interleaving Mechanism

= Second-round permutation: switch adjacent bits within every
subcarrier symbol

48 subcarrier symbols 1 subcarrier

€T 288 V ymbol
) )

Subgroup 1 // Subgroup 16

!

6 bits (64-QAM)
belong to 1 subcarrier symbol
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Jamming Strategy

Rate-independent interleaving pattern:

» Each subgroup consists of exactly 3 subcarrier symbols

* Two adjacent bits in the same subgroup are interleaved into
two adjacent subgroups

—

Two adjacent bits interleaved into subcarriers of distance 3

Interleaving Jamming
To jam n+1 subcarriers, select subcarriers

i+0, 43, i+6, ..., i+3n for arbitrary i
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Continuous-time Narrow-band Jamming
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Continuous-time Wide-band Jamming
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Continuous-time Whole-band Jamming
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Continous-time Pilot Subcarriers Jamming
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Continuous-time Interleaving Jamming
with Dn‘ferent Number of Subcarrlers
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Short-burst Pilot Jamming vs. Interleaving Jamming

Packet Error Rate (%)

June 9, 2015
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Conclusion -1

= Counter high-power jamming:

o Low-cost hybrid system: special antenna design and control combined
with digital cancellation technique

o Reduce up to 48dB of jamming power

o Zero-knowledge anti-jamming: unknown locations, variable jamming
power, no preamble/training sequence

o Environment adaptivity: outdoor and indoor anti-jamming



Conclusion - 2

Mitigate rate attacks:
o Hiding rate and increasing robustness at the same time

o Discovering new Generalized TCM codes: derive 85 codes for
upgrading {BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM} to any higher-order
modulation

o Cryptographic interleaving technique for completely concealing
modulation and code schemes

o 2-pass decoding mechanism improves the system performance more
than 3.5dB



Conclusion -3

" |nterleaving jamming strategy:

o Efficient against IEEE 802.11 interleaving mechanism

* Blocks 99% of packets by using jamming power 1/1000 of regular
transmit power

* Block all packets by jamming power 1/100 of regular transmit power

o At least 5dB and up to 15dB more efficient than other multicarrier
jamming strategies

June 9, 2015 Ph.D. Thesis
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