

Ph.D. Thesis Defense

Robust Wireless Communication for Multi-Antenna, Multi-Rate, Multi-Carrier Systems

Triet Dang Vo-Huu

College of Computer and Information Science Northeastern University

Committee members

Guevara Noubir Advisor, Northeastern University

Erik-Oliver Blass Airbus Group Innovations / Northeastern University

Rajmohan Rajaraman Northeastern University Srdjan Capkun Ext. member, ETH Zurich

David Starobinski Ext. member, Boston University

June 9, 2015

Pervasiveness of Wireless Systems

- Beyond providing user information and data services:
 - Air-traffic control
 - Power grids
 - Transportation systems
 - Human body implantable devices
- Trend: Radio devices migrating from hardware to software

Jamming Threats

GPS Jammer

CDMA/GSM/3G/ WiFi Jammer

Software-defined radio

Who is putting up 'interceptor' cell towers? The mystery deepens

Mysterious "interceptor" cell towers in the USA are phone calls — but they're not part of the phone no And, two experts told VentureBeat today, the towe appear to be projects of the National Security Age!

Magnetron

FCC fines Marriott \$600,000 for Wi-Fi blocking

Focus

High-Power Jamming

Crippling Jamming

Multi-Carrier Jamming

High-Power Jamming

- Powerful interference
- High coverage (hundreds of meters)
- Strong (1KW >> WiFi signal ≈ max. 20mW)
- Low cost

[Pacholok89]

[hacknmod.com]

Crippling Jamming

- Degrade system performance with low jamming power
- Hard to be detected
- Attack on link rate adaptation:
 - Higher bit rate, higher probability of error → higher jamming efficiency
 - Low-rate transmission link → network congestion
 - Attack [NRST'11] causes rate adaptation algorithms to use basic rate (1Mbps)
 - Theoretical analysis [OS'12] shows an effective jamming rate as low as 5%

Jamming in Multi-Carrier Communication Systems

Multi-carrier communication systems are popular today

- Previous work: Jamming on
 - Preamble (frequency offset attacks)
 - Pilot subcarriers
 - Control channels (LTE, GSM)
- Our study: Jamming on Wi-Fi communications

Agenda

1. Counter High-power Jamming

2. Conceal Rate Information and Boost Resiliency

3. SDR for High-Rate Wi-Fi Analysis

4. Multi-Carrier Jamming on Wi-Fi Communications

5. Conclusion

Agenda

1. Counter High-power Jamming

2. Conceal Rate Information and Boost Resiliency

3. SDR for High-Rate Wi-Fi Analysis

4. Multi-Carrier Jamming on Wi-Fi Communications

5. Conclusion

Previous Work

 Directional antennas, phase array antennas: high cost, more appropriate for radar systems

PAVE PAWS

- Uncoordinated spread spectrum [PSC'10]: lower transmission rate
- MIMO: require training sequences (cooperative)
- Full-duplex wireless communications, Ally friendly jamming are designed for extracting known signal rather than unknown jammers

Our Approach

- Steerable and separable two-element receive antenna (28dB)
 - Increase user signal's power
 - Decrease jamming signal's power
 - Antenna auto-control
 - Location awareness not required
- Digital Jamming Cancellation (20dB)
 - Additional single-element antenna
 - Requires no training sequences
 - Removes unknown and powerful jamming
- Two stages: 48dB

Receive Pattern

Number of lobes (or nulls) ≈ 4 (separation / wavelength)

Antenna Control Diagram

Digital Jamming Cancellation

- Goal: increase anti-jamming capability beyond 28dB
- Approach:
 - Use an additional single-element antenna
 - Extract original data signal from 2 received signals

Anti-jamming Performance: DBPSK and DQPSK

AA: Antenna Auto-configuration

DC: Digital Cancellation

Agenda

1. Counter High-power Jamming

2. Conceal Rate Information and Boost Resiliency

3. SDR for High-Rate Wi-Fi Analysis

4. Multi-Carrier Jamming on Wi-Fi Communications

5. Conclusion

Rate Attacks

- Jamming attack on rate adaptation:
 - Target to high-rate packets
 - Low-rate transmission links block other communications
 - Degrade whole system's performance
- Reason: Adversary knows the rate information
- > needs to hide the rate

Rate Detection

Explicit:

 Rate exposed in protocol's public header (Wi-Fi, LTE, ...)

Implicit:

- Modulation guessing: by analysis of received complex samples (in-phase and quadrature components)
- Code guessing: by analysis of received complex samples and tracking maximum likelihood symbol sequences

Challenges of Rate Hiding

- Encrypting Header:
 - No explicit rate exposing
 - Suffer from implicit rate detection
- Use only one rate:
 - No rate information lost
 - Loss of efficiency (always lowest rate)
- Modulation Unification [RK'14]:
 - Conceal modulation
 - Sacrifice of resiliency due to shorter symbol distance
- Applying Binary Error Correction Codes:
 - Good for BPSK and QPSK
 - Robustness not guaranteed for higherorder modulations
 - No protection against code guessing

Original Modulation

Modulation Unification

Goal and Approach

Goal:

- Prevent explicit exposing rate, modulation guessing, and code guessing attacks
- Boost resiliency at the same time with rate concealing
- Approach: We develop:

- Generalized Trellis Coded Modulation:
 - Counter modulation guessing: use highest-order modulation
 - Boost resiliency: Generalize TCM codes
- Cryptographic Interleaving:
 - Rate is not explicitly exposed
 - Counter code guessing
- Two-Pass Decoding: soft pre-decoding re-encoding for improved phase correction

Trellis Coded Modulation

- TCM is a convolutional code of rate k/(k +1) designed specifically to higher-order modulation
- Maximize Euclidean distance between coded symbol sequences
 - Binary codes are designed to maximize Hamming distance
- Coding gain depends on minimum distance between sequences of coded symbols
 - Uncoded modulation: minimum distance between individual symbols
- Heuristic code search: Set partitioning and design rules → regular/uniform mapping

Generalized TCM Codes

- General rate k/n
 - → conceal any modulation into any higher-order modulation
- Relax uniformity
 - → larger class of codes. We found some better codes
- Heuristic: but not based on set partitioning and design rules
 - 1. Generate a random code mapping
 - 2. Check validity of generated code
 - 3. Check coding gain: Compute free distance of code
 - Involves distances between every pair of paths that diverge and remerge
 - Running time: < 2ms per code

GTCM vs. Binary codes

Applying binary codes can result in less resiliency than uncoded modulation

Cryptographic Interleaving

- Why Cryptographic Interleaving?
 - GTCM does not conceal codes
 - Encryption baseband symbols amplifies errors exceeding decoding capability
- Our approach: Cryptographic Interleaving

Interleaving Process

Indistinguishable interleaving function:

```
y = Ax + B mod m
A = h(K|s|i|0) mod (m-1) + 1
B = h(K|s|i|1) mod m
```

x: index of symbol before interleaving

y: index of symbol after interleaving

m: block size, i: block index s: packet sequence number

K: shared secret

Requires 2 hash operations per block

Concealing Header:

- Encoded with fixed robust coding scheme
- Encrypted using AES-CBC: AES-CBC_K(MCS|SEQ|...|R)

System Impairments in Low SNR

- Performance drop with practical implementation and evaluation
- Reason: regular synchronization and correction techniques for frequency and phase offsets perform poorly in low SNR:
 - → introduce more errors than decoder's correction capability
- This is also a reason communication systems today still use low-order modulations (eg. BPSK) as a fallback mode to adapt to the environment

2-Pass Decoding

- Soft pre-decoding re-encoding
- Phase tracking: correction based on re-encoded symbols (skip wrong symbols)

Simulation Results

Experimental Results

Agenda

- 1. Counter High-power Jamming
- 2. Conceal Rate Information and Boost Resiliency
- 3. SDR for High-Rate Wi-Fi Analysis
- 4. Multi-Carrier Jamming on Wi-Fi Communications
- 5. Conclusion

Motivation

- GNU Radio is currently the most popular Software Defined Radio (SDR) platform, but:
 - Still lacks good Wi-Fi implementation
 - Some previous efforts (gr-ieee802-11) do not support full rate (only PSK modulations)
- Other existing platforms (WARP, Sora):
 - More expensive (WARP: \$4,900+, Sora: \$3000+)
 - WARP: custom development is more dependent on specific hardware and architecture (constrained to the FPGA capabilities)
 - Sora: still at pre-mature stage

SWiFi - Our goal

- Develop Wi-Fi radio on GNU Radio
 - > Compatible with general RF front-ends (e.g., USRP)
 - Re-use as much as possible GNU Radio supports

Current status:

- Broadcast transmitter and receiver with support for IEEE 802.11a/g full rates (up to 54Mbps)
- At every point in the transmit and receive chain, allows information extraction (e.g., for fingerprinting, etc.) or injection (e.g., covert channel)
- All signal processing functions are written in purely C++

SWiFi Receiver Design

Channel Estimation and Equalization

- Preambled-based frequency offset correction
 - Coarse estimation: using short preamble symbols
 - Fine estimation: using long preamble symbols
- Initial channel estimation: using long preamble symbols
- Update channel:
 - Phase correction using pilot subcarriers
 - Decision-directed update: demodulate symbol → compute mean squared errors → remove large errors → update by averaging over previous channel states

Throughput Comparison (Controlled Attenuation)

Throughput Comparison (Wireless Setup)

Agenda

- 1. Counter High-power Jamming
- 2. Conceal Rate Information and Boost Resiliency
- 3. SDR for High-Rate Wi-Fi Analysis
- 4. Multi-Carrier Jamming on Wi-Fi Communications
- 5. Conclusion

Wi-Fi Transmit Chain

Interleaving Mechanism

 Dividing coded bit sequence (Convolutional Encoder's output) into multiple same-size groups

Interleaving Mechanism

- First-round permutation: scatter adjacent coded bits
 - Each group divided into 16 subgroups
 - Bit j of subgroup i moved to bit i of subgroup j

Interleaving Mechanism

 Second-round permutation: switch adjacent bits within every subcarrier symbol

Jamming Strategy

Rate-independent interleaving pattern:

- Each subgroup consists of exactly 3 subcarrier symbols
- Two adjacent bits in the same subgroup are interleaved into two adjacent subgroups

Two adjacent bits interleaved into subcarriers of distance 3

Interleaving Jamming

To jam n+1 subcarriers, select subcarriers i+0, i+3, i+6, ..., i+3n for arbitrary i

Continuous-time Narrow-band Jamming

Continuous-time Wide-band Jamming

Continuous-time Whole-band Jamming

Continous-time Pilot Subcarriers Jamming

Continuous-time Interleaving Jamming with Different Number of Subcarriers

Short-burst Pilot Jamming vs. Interleaving Jamming

Agenda

1. Counter High-power Jamming

2. Conceal Rate Information and Boost Resiliency

3. SDR for High-Rate Wi-Fi Analysis

4. Multi-Carrier Jamming on Wi-Fi Communications

5. Conclusion

Conclusion - 1

- Counter high-power jamming:
 - Low-cost hybrid system: special antenna design and control combined with digital cancellation technique
 - Reduce up to 48dB of jamming power
 - Zero-knowledge anti-jamming: unknown locations, variable jamming power, no preamble/training sequence
 - Environment adaptivity: outdoor and indoor anti-jamming

Conclusion - 2

- Mitigate rate attacks:
 - Hiding rate and increasing robustness at the same time
 - Discovering new Generalized TCM codes: derive 85 codes for upgrading {BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM} to any higher-order modulation
 - Cryptographic interleaving technique for completely concealing modulation and code schemes
 - 2-pass decoding mechanism improves the system performance more than 3.5dB

Conclusion - 3

- Interleaving jamming strategy:
 - Efficient against IEEE 802.11 interleaving mechanism
 - Blocks 99% of packets by using jamming power 1/1000 of regular transmit power
 - Block all packets by jamming power 1/100 of regular transmit power
 - At least 5dB and up to 15dB more efficient than other multicarrier jamming strategies

THANK YOU!

QUESTIONS?