
Lecture 25 c©2005 Felleisen, Proulx, et. al.

25 It’s a Long Way To Tipparery...

Introduction

Until now we paid little attention to how much work is involved in per-
forming the computations that our methods represent. However, now that
we have seen several different ways of solving a particular problem we
need to understand how to choose which technique is better suited for the
problem at hand.

In general, when reasoning about computational processes, we are con-
cerned with the amount of time needed to perform a task, the amount of
computer memory needed while the computation runs, or the combination
of the two measures. We will first explore the time complexity of algorithms,
that is, the measure of the time it takes to perform a particular computation.
For most problems, the more data the computation consumes, the longer it
takes to produce the result. Therefore, we represent the time complexity as
a map from the size of the data to the estimated time it takes to perform the
task for data of that size.

Three Search Algorithms

Let us first consider the problem of determining whether the given col-
lection of data contains the given item. We first recall three solutions of
this problem, then we will reason about their advantages and shortcom-
ings. The first solution comnsumes an IRange iterator and traverses over
the data ina sequential order. The second solution is searching for an item
in a binary search tree. The third solution, the binary search, is new to us. It
takes advantage of the fact that in an ArrayList we can access data at any in-
dex location directly. It also requires that the data be stored in the ArrayList
in a sorted order.

For now, we assume these data structures already exist and contain the
data in the desired form. Later, we may ask about the time needed to both
construct the data structure and to then determine whether it contains the
given item.

We assume that all objects that represent our data items can be com-
pared using the given Comparator.

1

c©2005 Felleisen, Proulx, et. al. Lecture 25

Linear Search of Data Generated by IRange

Find the given item in the collection of data generated by the given IRange
iterator:

// does the given collection contain the given item,
// using the Comparator to compare two objects
boolean contains(Object obj, IRange it, Comparator comp){

if (it.hasMore()){

// is the current item the one we are looking for
if (comp.compare(it.current(), obj) == 0)

return true;

else

// continue the search in the rest of the data
return this.contains(it.next() , comp, obj);

}

// no more data to search through
else

return false;
}

Binary Tree Search

Assume the binary search tree is represented by three classes, ABST, Leaf ,
and Node, where Node contains three fields: Object data, ABST left, and ABST
right. The method contains is then defined as:

// in the class ABST:
// does this binary search tree contain the given item,
// using the Comparator to compare two objects
abstract boolean contains(Object obj, Comparator comp);

// in the class Leaf:
boolean contains(Object obj, Comparator comp){

return false;
}

2

Lecture 25 c©2005 Felleisen, Proulx, et. al.

// in the class Node:
boolean contains(Object obj, Comparator comp){

if (comp.compare(this.data, obj) == 0)
return true;

else

if (comp.compare(this.data, obj) < 0)
return this.right.contains(obj, comp);

else

return this.left.contains(obj, comp);
}

Binary Search of a Sorted ArrayList

This algorithms is a true divide and conquer kind of algorithm. To find out
whether the item appears in a sorted ArrayList we first ask whether it is the
middle item. If it is, the search is over. If the given item is smaller than the
item in the middle, the search continues only in the lower half . Otherwise,
the search continues in the upper half of the ArrayList.

Because we need to search in only a part of the given ArrayList, our
method will consume the lower and upper bound for the search, in addi-
tion to the given Object and Comparator:

// determine whether the given ArrayList contains the given object
// among the elements at index locations between low and high
// assert: high − low >= 0, low >= 0, high < arlist.size()
boolean contains(ArrayList arlist,

int low, int high,
Object obj,
Comparator comp){

// only one or two elements left
if (high − low <= 1)

return comp.compare(obj, arlist.get(low) == 0) ||
comp.compare(obj, arlist.get(high) == 0);

else

// compare with the middle for equality
if (comp.compare(obj, arlist.get((low + high)/2)) == 0)

return true;

3

c©2005 Felleisen, Proulx, et. al. Lecture 25

else

// obj smaller than the middle item
if (comp.compare(obj, arlist.get((low + high)/2)) < 0)

return contains(arlist, low, (low + high)/2 − 1, obj, comp);

else

// obj larger than the middle item
return contains(arlist, (low + high)/2 + 1, high, obj, comp);

}

Exercise.

Make examples of the use of the binary search, including the expected
outcome. Run your examples as tests.

Complexity of Search Algorithms

When measuring the time complexity of computation, we typically count
the number of basic operations that need to be performed to sove a problem
of the given size. When performing a search, we consider each comparison
to be the basic operation. The reasoning is that although for each compari-
son we also need to perform some other operations, such as advancing the
iterator, finding the index of the middle item, recursing to the left or right
subtree of a binary search tree, these operations are performed as a conse-
quence of a (possibly previous) comparison.

Linear Search of Data Generated by IRange

Suppose we want to find an item in a list of 10 items generated by an
iterator. In the best case, the item we are searching for is at the begining
of the list and our search algorithm produces a true result after just one
comparison. In the worst case the item is at the end of the list, or is not in the
list at all. In that case, we need to compare the given item with every item
in the list for a total of 10 comparisons. If the list had n items, we would
need n comparisons for the worst case. On the average, to find whether an
item is in the list takes about n/2 steps.

Rather than writing a mathematical function, the complexity of algo-
rithms is defined in terms of Big-O. We say, the worst case of the linear

search is on the order of n, and write it as O(n). (Please, read chapter 29
of HtDP for an explanation of the meaning of Big-O.) It will be clear that
the complexity of the search in the average case is also O(n). However, the

4

Lecture 25 c©2005 Felleisen, Proulx, et. al.

best case is different. Here we can produce the answer after just one com-
parison, and so the best case is on the order of O(1) - a constant time. That
means, it takes the same amount of time regardless of the size of the data
we search.

Binary Tree Search

For the binary tree search, the best case is the same as for the data gen-
erated by an iterator. If the item we are searching for is in the root node of
the tree, we will know after just one comparison, so it is again on the order
of O(1)

The rest of the analysis is much harder. We already know that the shape
of a binary search tree can vary widely. We have seen the following shapes
for the trees with six nodes:

c a
/ \ \

b e b
/ / \ \
a d f c

\
d
\
e
\
f

In the best case the nodes in the top levels all have both, the left and
the right subtree, and only at the last level are there nodes without both
children. The height of the tree (the number of levels) is on the order of
O(log(n)). The average time needed to determine whether a binary search
tree contains the given item is on the order of O(n). Intuitively we believe
this. However, a formal proof is much harder and is not given here.

In the worst case, when the binary tree has the degenerate shape, the
search requires n − 1 comparisons, and so the worst case search is on the
order of O(n).

Binary Search of a Sorted ArrayList

As before, the best case happens when the item is found on the first try.
In the worst case, we keep narrowing down the size of the interval between
low and high, until the difference is either 0 or 1. After each comparison, the
size of the interval becomes one half of the current size. That means that in

5

c©2005 Felleisen, Proulx, et. al. Lecture 25

the worst case we only need log(n) comparisons. The average case is also
on the order of log(n).

The following table summarizes our results:

+------------------------------+-----------+--------------+------------+
| Algorithm \ Case | Best Case | Average Case | Worst Case |
+------------------------------+-----------+--------------+------------+
| Linear Search of IRange Data | O(1) | O(n) | O(n) |
+------------------------------+-----------+--------------+------------+
| Binary Search Tree Search | O(1) | O(log(n)) | O(n) |
+------------------------------+-----------+--------------+------------+
| Binary Search of ArrayList | O(1) | O(log(n)) | O(log(n)) |
+------------------------------+-----------+--------------+------------+

Complexity of Insertions

We now consider the problem of inserting a new item into an existing struc-
ture. There are several variants of this problem. We can select whether to
insert an item at the beginning or at the end of the structure, provided the
structure is organized in a linear fashion (a list or an ArrayList). Inserting
at the begining of a recursively defined list consists of only one step: con-
structing a new list in which the new item is the first and the original list is
the rest. Inserting at the end of an ArrayList is usually also done in constant
time. Please, read the documentation of ArrayList for the explanation of
how the capacity of an ArrayList is handled.

It is much harder to insert a new item at the end of a recursively defined
list. We must traverse the entire list before we get to the end. In this case,
the operation that helps us estimate the time needed to perform the task is
the traversal, the advancing to the next element of the list. It is clear that
this insertion is on the order of O(n).

Inserting a new item at the begining of an ArrayList presents another
problem. The implementation of the ArrayList keeps the references to all
objects in a sequence of slots, so that the reference to the element at k is in
the k-th slot in the sequence of references. If a new element is inserted at
index 0, the references to all objects in the ArrayList have to be moved to
the next slot. (The last reference is moved to a new slot, then the next to
last is moved to the last slot, etc.) The time it takes to move the references
to the new slots represents most of the work in this algorithm. So, in this
case, we measure the time complexity by estimating the number of move
operations. Again, this algorithm is on the order of O(n).

6

Lecture 25 c©2005 Felleisen, Proulx, et. al.

Another situation to consider is when the data is already sorted and we
wish for the insertion to preserve the sortedness property. If the data is in a
linear list, we need to compare it with the items in the list in a sequential
order to find where to insert. This would require on the order of O(n) steps.
In an ArrayList we would traverse the first part of the list, comparing the
given item with the elements of the ArrayList, and then, in order to insert
the element in the middle, the remaining references wold have to be moved
over to the ’right’. Again, the algorithms is on the order of {O(n).

Finally, inserting a new item into a binary search tree is on the average
on the order of O(log(n).

Our results are summarized in the following table:

+-------------------------------------+------------+
| Algorithm \ Case | Complexity |
+-------------------------------------+------------+
| Insert at the front of a list | O(1) |
+-------------------------------------+------------+
| Insert at the end of a list | O(n) |
+-------------------------------------+------------+
| Insert into a sorted list | O(n) |
+-------------------------------------+------------+
| Insert into a Binary Search Tree | O(log(n)) |
+-------------------------------------+------------+
| Insert at the front of an ArrayList | O(n) |
+-------------------------------------+------------+
| Insert at the end of an ArrayList | O(1) |
+-------------------------------------+------------+
| Insert into a sorted ArrayList | O(n) |
+-------------------------------------+------------+

7

