
Lecture 22 c©2005 Felleisen, Proulx, et. al.

22 Traversing ArrayList

Introduction

By now we are aware of the fact that there are many different ways to rep-
resent the same information. We have also seen that the same structure of
data can represent all kinds of different information.

Java libraries, specifically the Java Collections Framework contain hier-
archies of different classes and interfaces that can be used to represent data
in many different forms. This allows the programmers to avoid mistakes,
share code, and better understand programs written by others. We will
learn about some of the classes and interfaces included in this framework,
and will learn to read the documentation to understand how to use any of
the others.

The first class from the framework we will use is ArrayList. It contains a
list of data, similar to the lists we have build ourselves, and does not have
a limit on the number of elements that can be added. Adding an element
to an ArrayList mutates the list: the add method produces a boolen value
that indicates success, but it does not produce a new ArrayList. Here is an
example. We first construct an empty ArrayList:

// using the constructor to build an empty ArrayList
ArrayList alist = new ArrayList();

Now, the test shows us that it is initially empty, and after adding three
elements, its size grows as expected. The examples also show the use of the
methods get(int index) and set(int index, Object value):

public void runTests(){
test("IsEmpty: ", true, alist.isEmpty());

alist.add("Hello");
alist.add("Good Day");
alist.add("Goodbye");

// currently the list has three elements
test("IsEmpty: ", false, alist.isEmpty());
test("Current size: ", 3, alist.size());

// elements can be accessed directly via index
test("element at 2: ", "Goodbye", alist.get(2));
test("element at 1: ", "Good day", alist.get(1));
test("element at 0: ", "Hello", alist.get(0));

1

c©2005 Felleisen, Proulx, et. al. Lecture 22

test("change element at 0: ", "Hello", alist.set(0, "Hi"));
test("element at 0: ", "Hi", alist.get(0));

}

We started with an empty ArrayList and added to it three String objects.
Even though the method add produces a boolean value, we ignored this
value, because we know it always produces true. The add method is in-
cluded in an interface that is implemented by many other classes, some of
which may not have the space available to add another element.

We then tested that the the method isEmpty() produced false and that
the number of elements in the ArrayList is indeed three.

The data in an ArrayList is arranged in a linear fashion, and each ele-
ment has a numberic label called index. The first element we added to alist
has index 0, the next one has index 1, etc. If we wish to refer to an element
of an ArrayList we use the method get and specify the desired index. So, the
test

test("element at 2: ", "Goodbye", alist.get(2));

verified that the last element of alist was indeed "Goodbye".

The last two tests also illustrate the use of the method set(int index, Object
value) that allows us to replace the element at a given location with a new
one. This method returns the reference to the object that has been removed
from the ArrayList.

Designing IRange iterator for ArrayList

We would like to use our IRange iterator to traverse over the elements
in the ArrayList. To do so, we need to design a class ArrayListRange that
implements Irange. The class needs at least one field — to hold the instance
of the ArrayListRange it traverses. Here is a skeleton of this class:

public class ArrayListRange implements IRange{
ArrayList alist;
. . . other fields if needed . . .

public ArrayListRange(ArrayList alist, . . .){
this.alist = alist;
. . .

}

2

Lecture 22 c©2005 Felleisen, Proulx, et. al.

public boolean hasMore(){
. . .

}

public Object current(){
. . .

}

public IRange next(){
. . .

}

}

At the first glance it looks like hasMore is the easiest method to write.
However, let’s hold of on that. For the ListRange the methods current and
next mirrored the behavior of the first and rest field access. What is the first
in an ArrayList? Well, is is the element at index 0, but only when we begin
the traversal. The iterator produced by the next method should return the
element at index 1 from it’s current method.

A few examples should help us understand the problem better. For the
following ArrayList

ArrayList alist = new ArrayList();
. . . // followed by initialization − inside some method: . . .
alist.add("Hello");
alist.add("Good Day");
alist.add("Goodbye");

and the ArrayListRange iterator:

IRange alistIt = new ArrayListRange(alist, . . .);

we expect the following behavior:

// elements can be accessed directly via index
test("element at 0: ", "Hello", alistIt.current());

IRange alisIt1 = alistIt.next();
test("element at 1: ", "Good day", alistIt1.current());

IRange alisIt2 = alistIt1.next();
test("element at 2: ", "Goodbye", alistIt2.current());

3

c©2005 Felleisen, Proulx, et. al. Lecture 22

IRange alisIt3 = alistIt2.next();
test("end of the ArrayList ", false, alistIt3.hasMore());

It is clear that each ArrayListRange instance not only needs to know
what is the ArrayList instance it is traversing, but also what is the current
position in this traversal. That means, we should add a field to the class
ArrayListRange that represents the current index. The hasMore method then
determines whether the current index refers to a valid location in the Ar-
rayList. Here is the complete class:

public class ArrayListRange implements IRange{
ArrayList alist;
int index;

// construct the IRange for the given ArrayList at the given index
// index < 0 indicates no more elements to generate
public ArrayListRange(ArrayList alist, int index){

this.alist = alist;
this.index = index;

}

// current element available if the index is valid
public boolean hasMore(){

return (this.index >= 0) ||
(this.index < alist.size());

}

// throw exception if current element is not available
public Object current(){

if (this.hasMore())
return alist.get(index);

else

throw new NoSuchElementException(
"No element is available.");

}

4

Lecture 22 c©2005 Felleisen, Proulx, et. al.

// throw exception if no further iteration is possible
public IRange next(){

if (this.hasMore())
return new ArrayListRange(alist, index + 1);

else

throw new NoSuchElementException(
"Iterator cannot advance further.");

}
}

We can now run the tests to make sure our iterator works as expected.
We can also add the tests from the previous lecture that included the

method contains:

// does the structure traversed with the given iterator
// contain the given object
boolean contains(IRange it, Object obj);

We modify examples shown there to use an ArrayList for the data con-
tainer:

ArrayList mtlist = new ArrayLlist();
ArrayList list1 = new ArrayList();
ArrayList list2 = new ArrayList();

public void runTests(){

list1.add("Hello");
list1.add("Hello");
list2.add("Bye");

IRange itmt = new ArrayListRange(mtlist, 0);
IListRange itl1 = new ArrayListRange(list1, 0);
IRange itl2 = new ArrayListRange(list2, 0);

test("Test contains:", false, contains(itmt, "Hello"));
test("Test contains:", true, contains(itl1, "Hello"));
test("Test contains:", false, contains(itl1, "Bye"));
test("Test contains:", true, contains(itl2, "Hello"));
test("Test contains:", false, contains(itl2, "Hi"));

}

5

