
Lecture 21 c©2005 Felleisen, Proulx, et. al.

21 Abstracting Traversals: Iterators

Introduction

We know by now that the same data may be represented in several differ-
ent ways. We can save the information in a list, or in a binary search tree
(BST), or maybe, there are other ways of keeping track of data. However, in
each case we need to be able to perform the same basic operations. We can
insert an item to a binary search tree, or add an item to a list, determine the
number of elements in a tree or in a list, find the first item, or the structure
that represents the rest of the items.

Another relevant observation is that over the time as we kept design-
ing new methods for manipulating lists of data our classes kept growing
and changing constantly. We had a choice of either carrying with us all the
methods we already designed, or having several different variants of the
same structures of data, each with methods relevant to our current prob-
lem.

Both of these problems suggest that we seek an abstraction. The first
one suggests that the structure of the data and our way of interacting with
this structure can be abstracted, so that we can interact in a uniform way
with several different structures.

Abstracting over the structure of data

Suppose we defined an interface that allowed us to add items to a col-
lection of data and to determine the number of elements in this collection.
The interface would be:

// an interface to represent the construction of a data set
interface DataSet{

// add the given object to this data set
DataSet add(Object obj);

// determine the number of elements in this data set
int size();

}

It would be easy to modify our list structures and the binary tree struc-
ture to implement this interface. For the lists, we do the following:

1



c©2005 Felleisen, Proulx, et. al. Lecture 21

// in the class ALoObj:

// add the given object to this data set
DataSet add(Object obj){

return new ConsLoObj(obj, this);
}

// determine the number of elements in this data set
abstract int size();

// in the class MTLoObj:
int size(){

return 0;
}

// in the class ConsLoObj:
int size(){

return 1 + this.rest.size();
}

though we may think of a better way of dealing with the size. For the
BST the add method would be the same as the original insert and again, the
size is the same as the count of nodes we designed earlier. However, now
we can build either of these structures using the same methods in the same
way.

We will see more of these kinds of abstractions when we discuss the
Java Collections Framework.

Abstracting over the traversals

The second problem is a bit harder. Each method that processed a list of
data engaged every element of the list in some computation, one element
at a time. We may have been just counting them, of selecting those that
satisfied some predicate, or producing a new value from the data contained
in the original data element (map).

The typical structure of the program was:

// in the class ALoObj:
abstract Object method(. . . );

2



Lecture 21 c©2005 Felleisen, Proulx, et. al.

// in the class MTLoObj:
Object method(. . . ){

return baseValue;
}

// in the class ConsLoObj:
Object method(. . . ){

return result using
. . . (this.first) . . .
. . . this.rest.method(. . . ). . . );

}

Not all parts were present for all problems, but it is clear that we needed
to be able to process the first item and to have access to the rest. Let us recall
similar methods in Scheme. The general structure of a function defined for
a list-like data was:

(define (fcn alist)
(cond

[(empty? alist) . . . produce base-value . . . ]
[(cons? alist) . . . produce result using

. . . (first alist) . . .

. . . (fcn (rest alist)) . . . ]))

We would like to be able to design a method in our Examples class that
consumes a list structure and produces a result that is computed by exam-
ining each element of that list. We need to design a mechanism that will
allow us to access the data in the list in the desired orderly fashion.

We start by defining the desired interface that allows us to observe the
contents of a list-like structure:

// functional iterator for a linear traversal of a data structure
interface IRange{

// is there a current element available in the structure
boolean hasMore();

// produce the current element of the structure
Object current();

// produce an iterator for the rest of this structure
IRange next();

}

3



c©2005 Felleisen, Proulx, et. al. Lecture 21

We have selected the names for these methods to be similar to the Java
Iterator interface. Alternately, we could select the names of these methods
to match the names for fields, methods, and scheme functions used in our
programs. The alternative definition of this interface (providing the same
information and functionality) would be

// functional iterator for a linear traversal of a data structure
interface FIterator{

// is the structure empty
boolean isEmpty();

// produce the first (current) element of the structure
Object getFirst();

// produce an iterator for the rest of this structure
IRange getRest();

}

We will design a class that for a given list of Objects implements the
IRange interface.

First, it must have access to the given list. That means, is will contain a
field that represents the list we are traversing.

// represent the traversal of a list of Object-s
class AListRange implements IRange{

ALoObj alist;

AListRange(ALoObj alist){
this.alist = alist;

}
. . .

We know the class must contain all the methods defined in the IRange
interface. We already have the purpose statements. Let us make some ex-
amples of the use of these methods:

ALoObj mtlist = new MTLoObj();
ALoObj list1 = new ConsLoObj("Hello", mtlist);
ALoObj list2 = new ConsLoObj("Bye",list1);

AListRange itmt = new AListRange(mtlist);
AListRange itl1 = new AListRange(list1);
AListRange itl2 = new AListRange(list2);

4



Lecture 21 c©2005 Felleisen, Proulx, et. al.

test("Test hasMore:", false, mtlist.hasMore());
test("Test hasMore:", true, itl1.hasMore());

test("Test current:", "Hello", itl1.current());
test("Test current:", "Bye", itl2.current());
// test("Test current:", "Error", itmt.current());

test("Test next:", itmt, itl1.next());
test("Test next:", itl1, itl2.next());
// test("Test next:", "Error", itmt.next());

Next, we need to design the method hasMore(). It should return true or
false depending on whether alist is an instance of the MTLoObj or of the
ConsLoObj. We get the following:

// is there a current element available in the structure
boolean hasMore(){

return alist instanceof ConsLoObj;
}

We run into a bit of a trouble when designing the current method. If we
knew that alist was an instance of ConsLoObj, the method could just pro-
duce alist.first. But is it is invoked with an empty alist, it is an error! Java
has a mechanism for signalling errors of different kinds by throwing Excep-
tions. There is a whole hierarchy of classes that extend the base Exception
class. For now we are only interested in errors that can be detected only
when the program is running. There are all represented by subclasses of
the class RuntimeException. The class NoSuchElementException seems to fit
the problem we encounter when the program attempts to use the current
element of an empty list, or to advance to the rest of the empty list. To sig-
nal the error we construct a new instance of the NoSuchElementException
class and supply as the argument a message that explains the reason for the
error:

// produce the current element of the structure
Object current(){

if (alist.hasMore())
return ((ConsLoObj)alist).first;

else

throw new NoSuchElementException(
"No current element available");

}

5



c©2005 Felleisen, Proulx, et. al. Lecture 21

Producing the iterator that traverses the rest of alist follows the same
pattern:

// produce the iterator for the rest of the structure
IRange next(){

if (alist.hasMore())
return ((ConsLoObj)alist).rest;

else

throw new NoSuchElementException(
"No next iterator available");

}

We need to run our examples to see that the implementation of our it-
erator works correctly.

Designing methods with iterators

We are now ready to think about methods that consume a list of data.
To make things more concrete, assume we want to determine whether the
list contains the given element.

The method purpose and header will be:

// does the structure traversed with the given iterator
// contain the given object
boolean contains(IRange it, Object obj);

We make examples using the data defined earlier:

ALoObj mtlist = new MTLoObj();
ALoObj list1 = new ConsLoObj("Hello", mtlist);
ALoObj list2 = new ConsLoObj("Bye",list1);

AListRange itmt = new AListRange(mtlist);
AListRange itl1 = new AListRange(list1);
AListRange itl2 = new AListRange(list2);

test("Test contains:", false, contains(itmt, "Hello"));
test("Test contains:", true, contains(itl1, "Hello"));
test("Test contains:", false, contains(itl1, "Bye"));
test("Test contains:", true, contains(itl2, "Hello"));
test("Test contains:", false, contains(itl2, "Hi"));

6



Lecture 21 c©2005 Felleisen, Proulx, et. al.

Next we think of the template. There is no relevant object that invokes
this method - as the method can easily be defined within any class that
knows about the AListRange. The Object obj contains only the methods de-
fined for all objects. We are interested in the method equals. The IRange
interface does not provide any fields, only methods. But there is only
one method we can invoke without any danger: it.hasMore(). However,
if it.hasMore() produces true we have two additional methods available:
it.current() and it.next(). The template then is:

. . . obj . . .

. . . obj.equals(. . . ) . . .

. . . it . . .

. . . it.hasMore() . . .
. . . if ((it.hasMore())

. . . it.current() . . .

. . . it.next() . . .

. . . contains(it.next(), anyObject) . . .

We can now complete the method body:

if (it.hasMore())
if (obj.equals(it.current()))

return true;
else

return contains(it.next(), obj);
else

return false;

Comparison with the earlier design

To gain some insight into how this method commputes, we compare it
to the earlier solutions, both within the ALoObj class hierarchy and writ-
ten in Scheme. Within the ALoObj class hierarchy the method contains is
designed as follows:

// in the class ALoObj:
abstract Object contains(Object obj);

// in the class MTLoObj:
Object contains(Object obj){

return false;
}

7



c©2005 Felleisen, Proulx, et. al. Lecture 21

// in the class ConsLoObj:
Object contains(Object obj){

if (obj.equals(this.first)
return true;

else

return this.rest.contains(obj);
}

It is clear that the clause following the true branch of if (it.hasMore())
corresponds to the code in the class ConsLoObj and the false branch corre-
sponds to the MTLoObj case. We see the same when comparing our code to
the function definition in Scheme:

(define (contains alist obj)
(cond

[(empty? alist) false]
[(cons? alist)

(cond

[(equal? obj (first alist)) true]
[else (contains (rest alist) obj)]))))

The empty clause produces false and the nonempty clause continues
with another conditional that produces true if match has been found and
otherwise recurs with the rest of the list.

8



Lecture 21 c©2005 Felleisen, Proulx, et. al.

// represent the traversal of a list of Object-s
class AListRange implements IRange{

ALoObj alist;

AListRange(ALoObj alist){
this.alist = alist;

}

// is there a current element available in the structure
boolean hasMore(){

return alist instanceof ConsLoObj;
}

// produce the current element of the structure
Object current();

// produce an iterator for the rest of this structure
IRange next();

}

9


