
Drawing and Controling the World

Viera K. Proulx

February 8, 2005

c©2004 Felleisen, Flatt, Findler, Gray, Krishnamurthi, Proulx

Simple Drawings

In order to draw the shapes like the circles, rectangles, and the combo shapes
we have seen, we must have some place where the drawings will become visi-
ble. Doing so requires that we use a tool (teachpack) that provides the drawing
surface and allows us to control its contents. We will first learn to draw basic
shapes. We will then see how the drawing can change over the time (creating an
animation), or in response to some events, such as a key press. These three fea-
tures: the drawing canvas, the change over time, and the response to keyboard,
mouse, or other events is at the core of many computer applications today.

To be able to see the drawing there must be a world (a stage, a canvas)
where the drawing becomes visible. ProfessorJ provides such world through a
teachpack and a library. Add the teachpack htdp/draw.ss to your environment,
and start the code with the follwing import statements:

import draw.Posn;

import draw.World;

import draw.Color;

import draw.Red;

import draw.White;

import draw.Green;

import draw.Blue;

This is the way we can use classes that have been defined elsewhere. The last
five import statements provide classes that represent colors for our drawings.
So, if we want our circle to be red, we must specify the red color as

new Red()

The first statement imports the Posn class, thus liberating us from defining
it every time we want to deal with drawings.

The statement import draw.World provides for us the class World. The
World contains the following useful methods:

1



// draw a solid disk

boolean drawDisk(Posn center, int radius, Color c);

// draw a solid rectangle

boolean drawRect(Posn nw, int width, int height, Color c);

// draw a circle

boolean drawCircle(Posn center, int radius, Color c);

// draw a line

boolean drawLine(Posn from, Posn to, Color c);

// clear a solid disk

boolean clearDisk(Posn center, int radius, Color c);

// clear a solid rectangle

boolean clearRect(Posn nw, int width, int height, Color c);

// clear a circle

boolean clearCircle(Posn center, int radius, Color c);

// clear a line

boolean clearLine(Posn from, Posn to, Color c);

// create a drawing canvas of the given size and show it

boolean start(int width, int height);

// destroy the drawing canvas

boolean stop();

We now design a simple class that represents a red blob on the canvas, in
the shape of a circle. We include a method draw that will draw the blob in the
given world. We add two other methods as well. One method that moves the
blob by a given distance, and, of course, the method same that compares two
blobs for extensional equality, so that we can test the method move.

// to represent a blob on the canvas

class Blob {

Posn center;

int radius;

Blob(Posn center, int radius) {

this.center = center;

this.radius = radius;

}

2



// draw this blob in the given World

boolean draw(World w) {

return w.drawDisk(this.center, this.radius, new Red());

}

// produce a circle with the center moved by the given distance;

Blob move(int dx, int dy){

return new Blob(new Posn(this.center.x + dx,

this.center.y + dy),

this.radius);

}

// determine whether this blob is the same as than given blob

boolean same(Blob b){

return this.center.x == b.center.x

&& this.center.y == b.center.y

&& this.radius == b.radius;

}

}

Of course, we make examples beforehand. You have already made similar
examples in your earlier homeworks.

class Examples {

Examples() {}

// Examples of blobs: c1, c2, c3 ----------------------------------

Blob b1 = new Blob(new Posn(100, 300), 30); // center low

Blob b2 = new Blob(new Posn(180, 20), 20); // top right corner

Blob b3 = new Blob(new Posn(40, 360), 40); // bottom left corner

// Testing the same method in the class Circle --------------------

boolean testSame1 = b1.same(new Blob(new Posn(100, 300), 30));

boolean testSame2 = b1.same(new Blob(new Posn(100, 300), 50)) == false;

boolean testSame3 = b1.same(new Blob(new Posn(130, 300), 30)) == false;

boolean testSame4 = b1.same(new Blob(new Posn(100, 140), 30)) == false;

// Testing the move method in the class Circle -----------------

Blob movedcircle = b1.move(50, 50);

boolean testMove1 = this.movedcircle.same(

new Blob(new Posn(150, 350), 30));

boolean testMove2 = this.b2.move(-20, 20).same(

new Blob(new Posn(160, 40), 20));

}

3



When creating and moving drawings, we can (and will) still test, whether
the new moved object has been constructed as expected.

To actually display the Blob on a canvas, we need an instance of the class

World, tell the world to produce a canvas of a given size, and then draw the
shapes.

The following code in the class Examples does the job:

// Building the drawing world ---------------------

// make an example of a drawing world

World dw = new World();

// show the world as a canvas of the size 200, 400

boolean testWorldStart = this.dw.start(200, 400);

// Drawing the circles:" --------------------------------------

// make a big blob and a small blob

Blob bigBlob = new Blob(new Posn(100, 200), 50);

Blob smallBlob = new Blob(new Posn(100, 100), 25);

// draw the big blob and small blob in the given world

boolean testBigBlobDraw = bigBlob.draw(this.dw);

boolean testSmallBlobDraw = smallBlob.draw(this.dw);

We first make an instance of the World, then tell the world to create a canvas
of width 200 and height 400, and make it visible, by invoking its start method.
Once we have instances of Blobs, they can invoke their draw method using the
World we built as their argument. If we include this code in the class Examples,
the instantiation of the class will produce the canvas and the drawing.

4



Event-Driven World

Next we learn to write programs that respond to user-initiated events, such as
keystrokes. Our goal is to move the blob around the canvas in response to the
four arrow keys: up, down, left, right. At each such keystroke we move the blob
a fixed distance in the indicated direction.

To accomplish this, we need to add to the class Blob the method

// move this circle 20 pixels in the direction given by the ke

Blob moveBlob(String ke){ ...

Exercise: Follow the design recipe to develop this method. Test it properly.

We then define a new class KeyEventWorld that extends World. This class
has one field that represents the blob to be drawn:

// represent the world of a Blob

class KeyEventWorld extends World {

Blob blob;

...

We first add the method that will draw the blob in this world:

// draw this world

boolean draw() {

return this.blob.draw(this);

}

Next, we need to add to our KeyWorld class the method that will invoke the
move method in the Blob class in response to each keystroke, with the String

argument that represents that keystroke. The method is defined as follows:

// what happens when the player presses a key

World onKeyEvent(String ke) {

// return the new world with the moved blob

return new KeyEventWorld(this.blob.moveBlob(ke));

}

We now construct an instance of the KeyEventWorld and start the world’s
timer. In the class Examples we need the following:

// construct an instance of a KeyEventWorld

KeyEventWorld w = new KeyEventWorld(new Blob(new Posn(100, 200), 20));

// start the world, start the timer

boolean testWorld = this.w.start(200,400)

&& this.w.bigBang(0.3);

To erase earlier blobs, we would also draw some background for the world.

5



Time-Driven World

There is only a small addition needed to allow the program to perform specific
tasks at each tick of the clock. The clock speed is determined when the program
starts, and then at each tick, the method designed to respond to the timer events
is invoked. We decide that at each timer tick, the blob should move in a random
distance, no more than 5 pixels in any direction, unless its center is outside of
the canvas bounds, at which point the game stops.

We first add the needed methods to the class Blob. We need a method
to produce a Blob moved a random distance, and a method that determines
whether this Blob is within the given bounds. Here are the purpose statements
and contracts for these methods:

// produce a new blob moved by a random distance < n pixels

Blob randomMove(int n){ ... }

// is the blob outside the bounds given by the width and height

boolean outsideBounds(int width, int height){ ... }

Exercise: Design these two methods. You should use the following helper
method to produce the next random number:

// to generate a random number in the range -n to n

int randomInt(int n){

return -n + (new Random().nextInt()) % (2 * n);

}

We now need to add the method onTick() to the class TimerWorld. This
method is invoked on every tick, in a manner similar to the way the onKeyEvent
method is invoked when a key is pressed.

// what happens when the clock ticks

World onTick() {

// if the blob is outside the canvas, stop

if (this.blob.outsideBounds(this.width, this.height))

return this.endOfWorld();

// else move the blob randomly at most 5 pixels in any direction

else

return new TimerWorld(this.blob.randomMove(5));

}

6



Games

You can now design your own computer game that responds to the key events
and/or timer clicks. Here are some possibilities:

• Worm Game: A worm (consisting of a head and a list of segments)
moves in ’its’ direction on each tick, unless the user selects s different
direction through the key stroke. A food morsel appears at random in the
play area. If the worm eats the food, it grows by a new segment. The
game ends when a worm either runs into the wall, or it ’eats itself’, i.e.,
the head attempts to move is such way that it would eat a part of itself.

• UFOs: An UFO is falling from the sky - moving slightly sideways as the
wind blows. The user can move a gun platform left or right, and shoot a
shot with the keystroke of letter ’x. Keep shooting, till you either hit the
UFO, or the UFO lands on the earth. Add more shots, more UFOs, etc.

• Ant Game: An ant travels through the play area controlled by the arrow
keys. As it moves, is looses weight from hunger. When it finds food (a
number of food morsels appear at random in the play area), it grows
bigger. The game ends when the ant is too small to live, or get too big
to move. (You choose what is too small or too big). It can also end when
the ant hits the wall.

• Star Thalers: Star Money, Star Thalers by the Grimm Brothers

There was once upon a time a little girl whose father and mother were
dead, and she was so poor that she no longer had a room to live in, or
bed to sleep in, and at last she had nothing else but the clothes she was
wearing and a little bit of bread in her hand which some charitable soul
had given her. She was good and pious, however. And as she was thus
forsaken by all the world, she went forth into the open country, trusting
in the good God.

Then a poor man met her, who said, “Ah, give me something to eat, I am
so hungry.”

She handed him the whole of her piece of bread, and said, “May God bless
you,” and went onwards.

Then came a child who moaned and said, “My head is so cold, give me
something to cover it with.”

So she took off her hood and gave it to him. And when she had walked
a little farther, she met another child who had no jacket and was frozen
with cold. Then she gave it her own, and a little farther on one begged
for a frock, and she gave away that also.

At length she got into a forest and it had already become dark, and there
came yet another child, and asked for a shirt, and the good little girl
thought to herself, “It is a dark night and no one sees you, you can very
well give your shirt away,” and took it off, and gave away that also.

7



And as she so stood, and had not one single thing left, suddenly some
stars from heaven fell down, and they were nothing else but hard smooth
pieces of money, and although she had just given her shirt away, she had
a new one which was of the very finest linen. Then she put the money
into it, and was rich all the days of her life.

Exercise: stolen fair and square from TS!2 workshop

Develop a game program based on the story of “Star Money, Star Thalers.”

The program should consume a natural number and drop that many
thalers (from the top of the world) on the girl (at the bottom of the
world), one at a time. The thaler should move randomly to the left or
right and downwards, but should always stay within the boundaries of the
world (canvas). The girl should react to ’left and ’right keystrokes, mov-
ing a moderate number of pixels in reaction but always staying completely
within the boundaries of the world.

8


