
Lab 8 c©2005 Felleisen, Proulx, et. al.

8 Starting in Eclipse

Goals

In the first part of this lab you will learn how to work in a commercial
level integrated development environment IDE Eclipse, using the Java 1.4
programming language. There are several step in the transition from Pro-
fessorJ:

1. Learn to set up your workspace and launch an Eclipse project.

2. Learn to manage your files and save your work.

3. Learn the basics of the use of visibility modifiers in Java.

4. Learn the basics of writing test cases in Java.

8.1 Learn to set up your workspace and launch an Eclipse project.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http://www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

Now go to the web page:

http://www.ccs.neu.edu/howto/eclipse/howto-windows-eclipse.html

on the documentation computer and set up your Eclipse working envi-
ronment. Ask for help if anything is not clear.

Start your Eclipse and follow the Welcome Tutorial to Build a simple

Java application.

Starting a new Project

• In the File menu select New select Project.

• In the pane that opens, under Java wizard select Java Project.

1



c©2005 Felleisen, Proulx, et. al. Lab 8

• Name the project Project1
You can select a different name, but here we will refer to this project
as Project1.

• In the bottom part select Create separate source and output folders

and click on Next.

• In the next pane just hit Finish.

• Now in the Package Explorer pane there should be Project1. Click on
the triangle on the side to open up the sub-parts, and do so again next
to src line.

• Download the file EclipseLab.zip to the desktop and un-zip it. Ask
for help if you do not know how. You sould now have a folder named
EclipseLab with three files in it: ISame.java, Book.java and Booktests.java.

• Highlight the src in the Package Explorer pane and in the File menu
select Import.

• Under Select an import source choose File System and click on Next.

• Next to From directory click on Browse and select the folder Eclipse-
Lab.

• Highlight the EclipseLab in the left pane, then select all three files in
the right pane.

• Leave all other selections unchanged and click on Finish.

• You should be back in the main Eclipse view. In the Package Explorer

pane under the src in your Project1 there should be a default package

with the three files in it. Open all three files.

• Highlight Project1 and select Run in the Run menu.

• In the Create, manage, and run configurations select New. Under
Project you should see Project1. If you do not, browse and find it.
Give a name to this configuration. We choose the name Project1.

• Click on the Search button next to Main class. It should prompt you
for the class Booktests. Hit OK.

2



Lab 8 c©2005 Felleisen, Proulx, et. al.

• Back in the Create, manage, and run configurations click on the Run

button.

• The program should run and produce output in the Console window
on the bottom. However, the window is very small. If you double-
click on any window tab in the Eclipse workspace, it will get resized
to cover the whole Eclipse pane. Double-clicking on its tab again re-
stores it back to the original view. Try it with the source files as well.

8.2 Learn to manage your files and save your work.

You noticed that instead of using one file to keep all of our work we now
have three different files. Java requires that each (public) class or interface
is saved in a separate file and the name of that file must be the same as the
name of the class or interface, with the extension .java. That means, you
will always need several files for each problem you are working on.

First, modify the files you were given by adding two more examples of
books to the BookTests class and showing the data in the main test driver.
Run your program.

Now save all your files as an archive. Go to the workspace subdirectory
of your eclipse directory and find the directory Project1. Make a .zip archive
of the files in the src subdirectory and save the archive in a folder where
you keep your work.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

8.3 Learn the basics of the use of visibility modifiers in Java.

Add a class Author that contains the information about author’s name and
age and modify the class Book to refer to an object in the Author class. Of
course, you need to define a new file with the name Author.java.

Notice that all declarations in the project files start with the word pub-
lic. These keywords represent the visibility modifiers that inform the Java
compiler about the restrictions on what other programs may refer to the
particular classes, fields, or methods.

Declare the fields name and age in the class Author to be private. Now
design a method sameAuthor to the class Book that consumes a name of the
author and determines whether the book was written by an author with
the given name. Write your examples as comments for now. We will turn
them into tests in the next part.

3



c©2005 Felleisen, Proulx, et. al. Lab 8

You should fail in making this method work. Run it. You will see the
message Error in a required project. Continue launch?. At times the com-
piler is smart enough to fix small errors and hitting OK works just fine. In
this case, hit Cancel. The program launch stops and it looks like nothing
happened. Go to the tab Problems in the bottom pane and see what the
problem are. You should see the message The field author.name is not visible
(or something similar). The error was probably signalled in your code al-
ready. Clicking on the red cross mark to the left or the erroneous statement
pops up message indicating what is wrong, and even offers suggestions for
fixing the problem, whenever possible.

The problem is, that you no longer can see the field name in the class
Author. The class Author does not let you see how the author’s name is
represented in its class. For all we know, it could ba a list of integers that
give you the position of each letter in the alphabet, so that an author with
the name Bach would have his name encoded as a list (2 1 3 7). However, we
can let the outside world find out whether this author’s name is the same
as the given String. Design a public method sameName to the class Author
that determines whether this author has the same name as the given String.

Modify the previous method to use this helper method to slove the
problem.

8.4 Learn the basics of writing test cases in Java.

We are now on our own - with no help from ProfessorJ to shows us nicely
the information represented by our objects, or to provide an environment
to run our test suite.

Viewing the data definitions

To make it possible to view the values of the fields for the objects we
define, we add to each class a method toString() that produces a String rep-
resentation of our data. Java allows us to use the + operator to concatenate
two Strings - it is much less messy than using the concat method we used
earlier.

The simplest way for defining the toString method for the class MyClass
is:

public String toString(){
return "new MyClass(" + this.field1 + ", "

+ this.field2 + ")"; }

4



Lab 8 c©2005 Felleisen, Proulx, et. al.

Our example for the class Book shows a more elaborate version that gives
us not only the value of each field, but also its name.

Java provides a toString() method for the class Object, but it typically
does not give us the information we are interested in, and so we define our
own.

You must define the method toString() for every class you design, even
if, at times, it may show only a portion of the data represented by the in-
stance of the class.

Designing tests

Our goal when designing tests is to make sure that we can tell easily
not only that some tests failed, but also which test failed.

Read the code that tests the method before. It prints out a String that
consists of the names of the tests and the results of the tests. Convert your
examples for the tests for the methods sameAuthor and sameName into sim-
ilar tests and run your code again.

Save your results as a .zip file.

8.5 Books and Authors

Start a new project. You may import the files that represent books, authors,
and your BookTests.java file as a starting point.

We now want to represent the following information. In the bookstore
we have a list of all books, each book has a list of authors, because we
know some books have more than one author. The authors are represented
by a class as well, as there is quite a lot we would like to know about each
author. Specifically, we would like to know the list of books this author
wrote.

1. Design the class hierarchy that represents the list of books and the list
of authors as described above. Drawing the class diagram is the best
- as we will run into problems when defining the constructors.

2. Write down examples of books and authors, as well as lists of books
and authors - in English. Make sure to include an example of an au-
thor who wrote more than one book, as well as an example of a book
that has more than one author.

5



c©2005 Felleisen, Proulx, et. al. Lab 8

3. Define the classes that represent this hierarchy, but make the con-
structor for the class Author initialize the list of books the author wrote
to the empty list. This constructor consumes only two arguments, the
author’s name and the year of birth.

4. Add toString() methods to all concrete classes. However, in the class
Author display only the titles of the books the author wrote. You may
need a helper method in the classes that represent the list of books.

5. Make examples of the data that can be represented in this class hier-
archy, leaving authors with empty lists of books they wrote. Add the
statements that will display the values of your examples as Strings.

6. Design the method addBook in the class Author that adds the given
book to the list of books this author wrote. This is the first method
that does not produce a value (void is used to indicate the return type
for such methods). The work of the method is accomplished through
side-effects, in this case through assigning a new value to the field
books for this Author object.

Think of how you would test such method.

7. Now extend your earlier examples by adding to your authors the
books they wrote. See that the method works by displaying the con-
tents of the Author objects using the toString() method.

8. In class we have modified the constructor for the class Book so that
it would automatically add this book to the instances of all authors
in the list of this book’s authors. Make this change and repeat your
’visual tests’.

9. Design several methods that asks typical questions about the contents
of the list of books and the list of authors, such as

• How many authors wrote this book?

• How many books did this author write?

• Did this author write a book with another (given) author?

6


