
Lab 12 c©2005 Felleisen, Proulx, et. al.

12 User Iteractions

Goals

In this lab you will learn a little about programming user interactions using
the Model-View-Control pattern for organizing the responsibilities.

The JPT library allows you to concentrate on the key concepts and avoid
the pitfalls of multitude of details, typically associated with GUI program-
ming.

The Existing Balloon Controls

Examine briefly the code already supplied with the lab. The code consists
of the following classes:

• class Balloon represents one balloon object, allows the user to move it,
paint it, and to compare two balloons for closeness to the top of the
graphics window.

• interface BalloonInput contains two methods: demandBalloon() and re-
questBalloon().

• class ConsoleBalloonInput implements the BalloonInput interface used
for reading the input from the console.

• class BalloonInputView defines a GUI to request the user input for
the data needed to initialize one Balloon instance. It contains two
TextFieldViews, one SliderView, and one ColorView.

• class GUIBalloonInput implements the BalloonInput interface for ex-
tracting the user input from the BalloonInputView GUI.

Run the code, and note the behavior in response to the various buttons.

Answer the following questions

1. Read the code for the class Balloon. Add the method eraseBalloon
which will paint the balloon in a white color (Color.white. Make sure
you have the examples and tests for this method.

1



c©2005 Felleisen, Proulx, et. al. Lab 12

2. Read the code for the method testConsoleInput in the class Interactions.
Describe to your partner (find one, just for this exercise) what the
method does. Look at the ConsoleBalloonInput class to make sure you
understand how the input is being read in.

3. Find the code for the action for the New button. Currently, it only
sets the value of the Balloon instance variables. Add to this action a
call to the method which paints the balloon, from the class Balloon.
Make sure it works.

4. Find all places where the xTFV is defined or used. Talk with your
partner and make sure you understand what is the purpose of each
of these code segments.

Using a similar technique, define a new TextFieldView named rTFV, to
represent the numerical value of the Balloon radius.

Test the behavior of the slider. Does it have any effect on the bal-
loon? Does it have any effect on the value displayed in the rTFV
field? Change the value of the rTFV field. Does it affect the slider?
Does it affect the balloon?

5. Define two new SimpleActions and the corresponding methods — an
rTFVaction and a SliderAction. It does not matter what you choose for
the label, because we are not going to use the actions with a button.

The first one void rTFVaction will be invoked when the value in the
field rTFV changes. It should then set the value of the balloon radius
and the value of the rSlider to the value displayed in the rTFV. To set
the state of the rSlider use the method

rSlider.setViewState("" + b.radius);

The second method void rSliderAction() will be invoked every time
the location of the slider (and the value it represents) changes. It must
then change the radius of the balloon and set the view state of the rTFV
calling the method setViewState in a manner similar to the above. If
you run the program now, you may be surprised to see that these
changes have no effect. Can you think of the way to test that the
methods work correctly?

2



Lab 12 c©2005 Felleisen, Proulx, et. al.

6. Now you have to tell the rSlider and the rTFV to perform this action
when their values change. The following two statements have to be
added at the end of the method void createViews():

rTFV.addActionListener(rTFVaction);
rSlider.addSlidingAction(sliderAction);

Test that this works.

7. Now that you have seen the method setViewState, add such method
to the class BalloonInputView. To see that is works, we need to modify
some of the fields of a Balloon instance and invoke the method. Try it.

8. In the last part you will control the balloon with the mouse. The first
thing you need to do is to change the manner in which the GUI is
displayed. Look at the code in the class Interactions for the method
testBalloonControl(). Replace the line which calls the method showOK-
Dialog with the following:

JPTFrame.createQuickJPTFrame("Balloon Control", bc);

This places the BalloonControl into a window that runs in its own
thread, i.e. independently of the rest of the application. That allows
the rest of the appplication to watch out for the mouse movement and
clicks inside of the graphics window.

9. The first mouse action you will build will increase the radius of the
balloon by ten, every time you click the mouse. All of this is in the
class BalloonControl. Start by defining the method
protected click(MouseEvent mevt) which does the following:

• Print into the console a message that the mouse was clicked.

• Erase the balloon

• Increase the balloon radius by 10

• Set the view state of the BalloonInputView bView to the current
values of the balloon. (Only the radius has changed, but it is
easier to let the BalloonView do the whole job by invoking the
method setViewState.

• Finally, paint the changed balloon.

3



c©2005 Felleisen, Proulx, et. al. Lab 12

10. We need to ask the window to provide us with its MouseActionAdapter
as follows:

• After the definition of the BufferedPanel, add the definition:

public MouseActionAdapter mouseAdapter;

• Inside of the constructor for the class BalloonControl first initial-
ize the mouseAdapter as follows:

mouseAdapter = window.getMouseActionAdapter();

• Add the action to perform when the mouse is clicked as follows:

// respond to mouse clicks
mouseAdapter.addMouseClickedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

click(mevt);
}

});

At this point you should test that your program runs as you ex-
pected.

• Finally, you will make the balloon move when the mouse moves.
Do all the steps you have done for the clicked action, but do not
get a new mouseAdapter. The following code will add the action:

// track mouse motions
mouseAdapter.addMouseMovedAction(

new MouseAction() {
public void mouseActionPerformed(MouseEvent mevt){

track(mevt);
}

});

Inside of the track method get the coordinates of the mouse as
follows:

b.x = mevt.getX();
b.y = mevt.getY();

4



Lab 12 c©2005 Felleisen, Proulx, et. al.

and see what your program does. (Probably nothing - you still
have to erase the old balloon, before you make the changes, paint
the new balloon, and as a courtesy, set the view state for the
view.) Now you should have fun.

5


