
CSU213: Lab 9

March 16, 2004

Goals. Familiarize with

� Usage of abstract classes to minimize efforts implementing large interfaces

� Linked list and stack

� Inner classes

� List and ListIterator interfaces.

1 Work Setup

1. Download Lab9.java, jpt.jar, and jpfalt.jar from the lab’s web page.

2. Create a new project. Import the above files.

3. Add JAR files. (Project � Properties � Java Build Path � Libraries � Add JARs...)

4. (Optional, for only those who still have troubles exporting to Zip file):

(a) Export the project to a Zip file.

(b) Delete the current project. Create a new project using the exported Zip file.

2 Your own Linked List

Goal. Build your own linked list, which is simpler and therefore slightly more efficient than that
of standard Java.

2.1 Understanding existing Java’s LinkedList

1. Look at the specification of standard Java’s LinkedList class in the Sun Java API Speci-
fication (http://java.sun.com/j2se/1.4.2/docs/api/). Make sure you understand the following
things:

� Its relation with Collection and List interfaces.

� Which methods that Collection and List interfaces have.
� How many ancestor classes does LinkedList have ? For each ancestor class, investi-

gate:

– How the relations with Collection and List interfaces change from one class to
another.

– Which method of the interfaces it implements, and which it doesn’t (still declares
as abstract methods).

2.2 Adding features to your own linked list

A partly-completed class is provided as MyLinkedList. You need to add more features to it to
complete.

1. The inner class MyLLIterator represents an iterator over MyLinkedList. Re-write methods
MyLLIterator.hasNext() and MyLLIterator.next() so that they have the desired behaviors.
Notes:

� You are NOT allowed to use the standard Java’s LinkedList class to implement these
methods.

� Don’t worry about testing right now. You will know how to test in the next step.

2. The testing is provided in Lab9.testMyLinkedList(). Uncomment it. See why this method
does not compile.

3. In order to make method testMyLinkedList() compile, you need to make the class MyLinkedList
implement the Collection interface.

(a) How many methods will you have to implement if you choose to implement Collection
interface directly ?

(b) To reduce to burden, choose an appropriate ancestor class of the standard LinkedList
class to extend from, and add necessary methods to make it work.
Hints:

� You need to implement Collection interface, but not List interface.
� You need to implement methods that are declared abstract in the abstract class.
� The iterator class for MyLinkedList class is already there: MyLLIterator.
� There is already a data member size representing the size of the list.

4. Run Lab9.testMyLinkedList() to check if MyLinkedList works correctly.

3 Extending Stack

Goal. Extend the standard Stack class so that we can “peek” not only the top of the stack, but
also the objects below the top of stack.

2

1. Look at the specification of the standard Stack class. Understand how peek(), push(), pop()
methods work.

2. Implement method MyStack.peek(int depth) so that it has the desired behavior. You can
use any methods of the standard Stack class.
(Hints: you would be able to implement it using only the peek(), push(), and pop() methods
of Stack class.)

3. Run testing method Lab9.testMyStack() to check if it works correctly.

4 List and ListIterator

Make MyLinkedList class implement the List interface.

� Similarly to part 2, it is painful to implement List interface directly. You should find an
appropriate abstract class to extend from.

� The testing is provided in Lab9.testListIteratorOfLinkedList(). Uncomment it, do neces-
sary things to make it work.

3

