
Lab 2: Designing Methods

Software provided

• class Soda with two methods: isBig and sameBrand

• class Letter and class Ad with examples, but no methods

Goals

• Develop methods for a simple class — learn how to organize work.

• Develop methods for a class that contains member data that is an
instance of another class.

• Develop methods for a class hierarchy with abstract class and derived
classes.

• QUIZ: Demonstrate understanding of class definitions

Details

• Methods for a single class Soda

– Open up the file soda.java. Read the existing code and observe
its organization

∗ class definition first
∗ fields (member data) definitions
∗ the constructor
∗ template as a Java Comment Box - initially with all fields,

later we add each method as it is developed
∗ method definitions
∗ examples of class instances (after the class closing brace) in

Java Interactions Boxes
∗ Java Interactions Box that indicates the start of method

tests
∗ Java Interactions Boxes with method tests: if possible writ-

ten in such way that they only produce true

– Add to the class Soda a method unitPrice that determines the
price in cents per one ounce of soda. Follow the design recipe,
and keep the structure of the code.

1

– Add to the class Soda a method betterPrice that determines
whether the unit price of one soda is better than the unit price of
some other soda. Follow the design recipe, and keep the structure
of the code. Remember to use the template as needed.

• Methods for a class with containment.

– Save the work on class Soda, then start again.

– Modify class Soda, so that it refers to Brand class, where the
brand besides the name includes the information whether this
soda contains caffeine and whether this is diet soda. Make new
examples of class instances for both classes.

– Modify the method sameBrand in the class Soda to reflect the
new class design. Make sure the code for the class Soda does
not have to change if we decide to change the way we record the
information about the brand.
Hint: Follow the principle of single point of control.

• QUIZ (10 minutes, closed notes, closed monitor)

• Methods for unions of classes

– Download the code for the classes that represent mail items —
mail.java.
Currently the two classes represent a letter and a piece of adver-
tisement.

– Define a new class for items that can be mailed: class Package.
In addition to the weight and postage rate, these items can be
insured for some dollar value. The insurance fees are given as
cost of insurance for each $100 of value.

– The postage for all items is determined as follows:

∗ The base price is computed by multiplying the weight by
rate.

∗ For letters, we add the fees as given.
∗ For packages, we add the cost of insuring the package.

– Design abstract class AMail to represent there three kinds of mail
items and modify the three class definition to extend this class

– Design the method basePrice — a concrete method in the ab-
stract class — that computes the base postage for all mail items.

2

– Design the method actualPrice for this class hierarchy. It must
be abstract in the class AMail and have concrete implementation
in all derived classes.

– Design the method isCheaper that determines whether one piece
of mail requires less postage than another piece of mail.

3

