
LAB 12: JAVA Sockets Programming

Goals
Become familiar with basics of networking: internet architecture, IP addresses, TCP
connections, ports. Learn the basics of Java sockets programming: creation and usage of
sockets; communication between server/client applications running on different machines
on the network.

Basics of Networking

Internet Architecture:

Suppose you want to transfer a file from an FTP server on
one machine to your machine using an FTP client. Let us
follow the steps required to initiate such transfer.
When you start your FTP client and try to connect to an
FTP server on some machine (say, denali.ccs.neu.edu)
your FTP client first finds out IP address of the server
(using DNS for example; denali’s IP is 129.10.116.200).

Then it sends a request to open a connection with denali (this request is sent to port 21 –
the default port for FTP protocol). If denali is running an FTP server it will respond to the
requests that come on port 21. Denali will figure out where the request came from and
will reply with an ACK. We will not go into the specifics of establishing a TCP session;
we will only note that server and client eventually find out each other’s IP addresses and
ports to use for this connection. Once the connection is established data can be
transferred.

Basics of Java Sockets Programming

What is a socket?
A socket is an end-point of a two-way connection between two applications that
communicate over the network. In Java a socket can be represented with an instance of
Socket class. The java.net package provides two classes that we are going to use for this
lab: Socket (client side of the connection) and ServerSocket (server side).

So what is socket programming?
Socket programming allows one to write applications that communicate over the
network. Each computer has a number of ports, and an application can reside on any of
these ports. We say that an application is listening on a particular port if it constantly
checks for messages coming from network and destined to this particular port number.
Usually server side application will be listening on some well-known port number and
reply to client applications attempts to establish communication (web servers – port 80,
ssh – port 22, FTP servers – port 21, etc).

Relevant Java API reference:
http://java.sun.com/j2se/1.4.2/docs/api/java/net/ServerSocket.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/InetAddress.html

http://java.sun.com/j2se/1.4.2/docs/api/java/net/DataInputStream.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/PrintStream.html

Client and Server Examples

1. Take a look at the code for MyServer and MyClient classes (pay attention to comments
in the code for explanation). Describe the steps the server will take if it gets a packet from
the network destined to port 6070. For now the machine that the clients try to connect to
is “localhost”. What happens if you set the variable remote to be something else (say,
denali.ccs.neu.edu)?

2. Let’s take a look at what the steps for client side program would be:

• Open a socket
• Open an input stream and output stream to the socket
• Read from and write to the stream according to the server's protocol
• Close the streams
• Close the socket

What are the steps that MyClient application takes to connect to the server? Look at the
while loop and try to understand what exactly happens in the body of this loop and what
has to happen for the program to exit this while loop.

3. Can you figure out how to get the IP address or host name of the remote side of the
socket? (Hint: look for System.out lines in the code…). Modify the code for the client
program: make it try to connect to an alternative server if the connection for the first one
fails. Note that you need to only retry to connect once. If this fails just exit the program.
The information about what happens when a connection attempt is not successful can be
found in the API (hint: Socket class, connect() calls).

Network Collaborative Guessing Game

Now let’s see who is fast and skillful in doing network programming in Java!
You have an opportunity to take part in a collaborative guessing game over the network.
The game proceeds as follows:

Each player can log in and get assigned a “lucky number”. The goal of the players is to
guess the “lucky numbers” of as many players as possible. These “lucky numbers” are
string representations of doubles chosen at random by the server. This is why is not likely
one will make a correct random guess. However players can query the server for the
“lucky numbers” of other users and submit obtained information.

So what will you need to do to play this game? You will have to modify the example
code for MyClient.java. Make the program connect to the server and either query the
server for “lucky numbers” manually (console input/output) or write a program that will
fetch information automatically for you.

Here are the steps you will have to go through to play:

0. First you need to find out server’s name and port number. (Ask your TA about server
name/IP address; the port will most probably be 6070)
1. To log in send “login:first_last ” to the server, where first_last is your first and last
name
2. The server will send you back “replylogin:id” and id will be a string representing an
integer indicating your unique id in server’s database (“replylogin:failed” will be sent if
error occurs).
3. Now you can send a string “list” to the server to find out who else is logged in. The
server will send you back the name of one of the logged in users at random, with some
probability the server will send you a string “exit”. If the server sends “exit” your client
will have to exit – the game is over for you and you will have to start from scratch (Note:
this is not enforced, but please be nice and follow the rules!).
4. If you receive “reply:user_name”, then you can send server “request:user_name” and
get the lucky number of user user_name.
5. The server will reply to your request with “replyrequest:user_name:number”.
6. Now you can submit “guess:id:user_name:number” and get your points for the correct
guess (id is that unique number that the server sent you when you logged in). Note: all the
messages can be converted to strings to be sent over the network.

Good luck!

Appendix – Game Protocol

Message format - Client:
login:first_last – login request
list – get name of one of the players
request:first_last – get lucky number of player first_last
guess:id:first_last :number – submit your guess of user first_last’s lucky number

Message Format - Server:
reply:error – sent upon reception of incorrectly formatted message
replylogin:id:number | replylogin:failed – reply to login
reply:user_name | exit – response to “list” message
replyrequest:first_last :number | replyrequest:empty – response to request message
replyguess:correct | replyguess:incorrect – a reply to submission of your guess

Score points: how many users’ numbers you guessed + how many times your number
was guessed by others.

Disclosure: “points” mentioned above unfortunately have nothing to do with extra credit points. But they are still a great way to
impress you peers and professors ☺

Sources
http://java.sun.com/docs/books/tutorial/networking/sockets/
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-sockets_p.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/ServerSocket.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html

