Assignment for Week 9: Complexity of Algorithms
Goals

The provided software implements four sorting algorithms, two Comparators,
creates arbitrary collection of test data, and contains a TimerTest class
which runs timing tests for all four algorithms and a selection of Comparators
and test data.

The goal of this assignment is to learn how to design timing tests, and
to reflect on the performance of these four algorithms.

Detalils

Do the following to become fa=miliar with the working environment. You
do not need to hand in any evidence that you have done so.

1. Print for yourself a copy of the TestSuite.java file and the TimerTests.java
files.

2. Read the code in the TestSuite.java and run the following tests:

o TestCity
TestInGuiRange

TestInFileRange (use the file cities.txt or minicities.txt)

TestInFileRangeBuffered (use the file cities.txt or minicities.txt)

TestInConsoleRange

Make intentional errors when typing in zip codes, latitudes, and lon-
gitudes, and observe how the program deals with them. (If you are
curious, read as much code as you wish...)

3. Read the code for testDataSets and run the test. Use the file small-
cities.txt. This is a test for building a collection of source data for the
timer tests. You can choose different sizes of the test data.

4. Try the timer test, read the code, and find out how the timing is
measured. You may want to see the Javadoc documentation for the
methods and classes used.

For the following part of the homework, you need to submit either
a working code, or the output from the JPT console, or both - as
indicated.



10.

Design (implement and test) a comparator which compares the cities
by latitude. All latitudes are positive numbers, compare them by
ascending numerical order. (A new class definition and tests in the
TestSuite class.)

Modify the timer tests, so they include the tests with latitude com-
parator. (Changes to the TimerTests class, and the necessary tests in
the TestSuite class.)

If you run the tests several times, you observe that they produce dif-
ferent results each time. To get meaningful data, the tests should be
run several times over the same size data, and the results should be
averaged over all comparable tests (same size, same algorithm, same
comparator).

Design a method runOneTest in the class TimerTests which will for a
given sorting algorithm, the given comparator, and a given size of the
test data, compute an average over 20 different test data sets. Make
sure you include tests for this method in the TestSuite.

Design a ’driver’ for tests that will produce results similar to the origi-
nal timer tests, but this time, each result will be an average of running
the tests for 20 different test data sets for each instance of the test.
This should be a new method in the TimeTests class, with tests in-
cluded in the TestSuite class.

Run the tests, and save the output from the console as a text file.

Write a short technical statement that answers these specific questions:

e Which algorithm(s) perform well for sorting short, randomly shuf-
fled sequences?

e Which algorithm(s) perform well for sorting long, randomly shuf-
fled sequences?

e Which algorithm(s) perform well when their input is already
sorted or almost sorted?

Include a justification of your answers, based either on the evidence
gathered from the timing tests, or based on your understanding of
these algorithms.

You can append this to the output from the console and submit as a
test case item with your homework.



11. Zip the code for your homework and submit as a code part of your
submission.

EXTRA CREDIT
Design and implement the classes MergeListSort and MergeVectorSort
by making any needed modification to your solution to the previous home-
work and add them to the timer tests.



