Assignment for week 8: Sorting
This assignment is due at noon on Friday, 12 March.

In what follows, “develop a class” and “develop a method” mean what they
meant in assignment 6. You are not required to use templates for this
assignment.

The purpose of this homework is to implement three different sorting
algorithms, each working with two different kinds of underlying data struc-
tures (list or vector). The algorithms will then be tested on several different
input data sets, using two different ways of comparing the elements of the
structure.

For this assignment, you are given a file named Week8. java that contains
some of the code from Lab7. java and some additional classes that you can
use to construct examples and test data for this assignment.

1. Develop a class City that contains information about a US city’s name,
state, and geographical location given in latitude and longitude. The
state will be given as a standard two-letter abbreviation. The latitude
and longitude will be accurate to four or five decimal places.

2. Develop two different classes that implement the Comparator interface.
Instances of the first class shall compare two cities according to the
lexicographic order induced by the natural orderings on the strings
that give the cities’ state abbreviation and name, considering the state
abbreviation to be more significant than the name. Instances of the
second class shall compare two cities according to their latitude, with
the more southern city being considered less than a more northern
city; if two cities have equal latitudes, then this second Comparator
shall regard them as equal.

3. Develop a VectorRanger class that implements the IRange interface.
The constructor for this class shall take a Vector as its sole argument.
An instance of this class shall generate the elements of that Vector,
in order.

4. The SortAlgorithm interface is defined by

interface SortAlgorithm {



// Stores the objects generated by the given IRange into
// some local data structure, but does not sort them.

//

// This method must be called before any of the others.
// This method may be called more than once, in which

// case the objects that were generated for a previous
// call are discarded.

void initializeDataSet(IRange ir);

// Sorts the objects into some internal data structure without
// changing the local data structure that holds the unsorted
// objects.

//

// (Thus a destructive sort algorithm must first perform a
// shallow copy of the objects to be sorted into the data

// structure that will be destroyed by the sort() method.)
//

// Repeated calls to this method should repeat all the steps
// of the first call, because this method will be timed to
// measure the performance of different sort algorithms.

//

// This method shall not be called until after this object’s
// initializeDataSet(IRange) method has been called. This
// method shall be called before this object’s

// isSorted(Comparator) method is called.

void sort(Comparator cmp);

// Returns true if the sorted objects are in order according
// to the given Comparator, which is not necessarily the one
// that was used to perform the sort.

//

// This method shall not be called until after this object’s
// sort(Comparator) has been called.

isSorted(Comparator cmp);

// Returns an IRange that generates the sorted objects, in
// sorted order.



//

// This method shall not be called until after this object’s
// sort(Comparator) has been called.

// 1f this method is called more than once, it shall return
// a freshly created IRange for each call.

IRange result();
}

Develop six classes

e ListInsertionSort,

e VectorInsertionSort,

o ListMergeSort,

e VectorMergeSort,

e ListQuickSort,

e VectorQuickSort
that implement the SortAlgorithm interface using the named algo-
rithm (insertion sort, merge sort, or quicksort) on the named data

structure (AList or Vector). The constructors for these classes shall
take no arguments.

5. For each class, develop the four methods listed in the SortAlgorithm
interface.

6. Write tests for the six implementations of SortAlgorithm, using both
Comparator classes. (The randomCities(int) method in class CityData
might be helpful here.) Change the main method so it runs your tests.

7. Submit your program in the usual way.



