Assignment for Week 11: Maps Et Cetera
Due Wednesday, 7 April 2004

Goals

This assignment consists of a small program that uses several and possibly
many interfaces and classes from Java’s standard class libraries. The goal
is to give you a bit of design freedom: You get to decide which parts of the
standard libraries you want to use. If you design well, then this assignment
should be fairly straightforward. If you design less well, then this assignment
might become more interesting.

Hints

Some or all of the following interfaces and classes are likely to prove useful. In
the java.lang package: Comparable, Integer. In the java.util package:
Collection, Comparator, Iterator, List, Map, Set, Collections.

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary? For
this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were run on a file
that contains all of Shakespeare’s works, it would tell you the approximate
size of his vocabulary, and how often he uses the most common words.

Hamlet, for example, contains about 4542 distinct words, and the word
“king” occurs 202 times.
The Assignment

You are given a text file test.txt that contains Hamlet, and a Java file
Weekl11l.java, which is in the default package. Your assignment is to write
another Java file Word. java, which is also in the default package.

1. Define a class StudentTests. Within this class, define a run() method
that will run all of the tests you write for this assignment.

2. Define a class Word that represents an English word. The constructor
for Word shall take one argument, a string such as “king”.

3. The Word class shall implement the Comparable interface, and shall
override the toString(), equals(0Object), and hashCode () methods



of the Object class. Two instances of Word shall be considered equal if
the strings that were passed to their constructors are equal. Similarly
a Word’s compareTo method should just delegate to the corresponding
String’s method.

. Define a class WordCounter. The constructor for WordCounter shall
take no arguments, and shall initialize the WordCounter object in
whatever way you deem appropriate for a WordCounter object that
has not yet counted any words.

. Within the WordCounter class, define the following methods:

// Records the Word objects generated by the given Iterator.
void countWords (Iterator it) { ... }

// How many different Words has this WordCounter recorded?
int words O { ... }

// Prints the n most common Words and their frequencies.
void printWords (int n) { ... }

. The countWords (Iterator) method takes an Iterator that gener-
ates Word objects, and updates the state of this WordCounter to re-
member all of the generated Word objects together with how many
times each Word was generated. The order in which the Words were
generated does not matter, and does not need to be remembered by
this WordCounter.

. The words () method returns the number of different Words that have
been generated by the Iterators that have been passed thus far to
this WordCounter’s countWords method. This is usually less than the
total number of Words that have been generated. For example, the
word “and” is only one word, even if it has been generated 966 times.

. The printWords method uses System.out.println to print the n
most common Words that have been generated by the Iterators that
have been passed to this WordCounter’s countWords method, together
with the number of times each Word has been generated. Each Word
should be printed on the same line as its frequency, separated by a
single space, one Word per line, in the format shown by this example
output:



chuck 4
wood 4
a2
could 1
how 1
if 1
much 1
would 1

The Words shall be printed in order of decreasing frequency, as shown
above. When two or more Words occur with the same frequency, such
as “chuck” and “wood” above, the Words should appear in alphabetical
order. If there are fewer than n words altogether, then the output shall
end after all of the Words and frequencies have been printed.



