
Game Design in Object-Oriented Style:
Data, Tests, Programs

Viera Krňanová Proulx

Northeastern University

vkp@ccs.neu.edu

1

What is Introductory Computing?
Introductory Computing Options
Programming: Why and How

Programming and Design
Pedagogical Innovations
Our Experiences

2

Introduction

Introductory Computing Options

• Programming as a game: Logo, Alice, Scratch
• Learning to use applications: Word, Excel, Database, Web
• Programming robots: Lego Mindstorms, Cricket
• Web design, multimedia
• Programming as a computation -- algorithmics
• Language-driven programming
• Programming as design -- data centric

3

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch
http://www.logo.com/imagine

4

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch
http://www.alice.org

5

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch
http://scratch.mit.edu

6

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch
Advantage: nice images - excitement
Advantage: tinkering - exploration
Disadvantage: tinkering, not planning
Disadvantage: (except Logo) - no way of composing small parts
into bigger ones
Disadvantage: where do we go from here?

7

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web
http://wps.aw.com/aw_snyder_fluency_1/

8

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web
http://LabView.com

9

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web
Advantage: useful skills
Advantage: some understanding of computing (if done well)
Disadvantage: skills, not concepts
Disadvantage: not encouraging to design abstractions
Disadvantage: where do we go from here?

10

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket
http://mindstorms.lego.com

11

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket
http://www.cricket.org

12

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket
http://www.cricket.org

13

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket
Advantage: engaging - exploration
Advantage: interesting environment
Disadvantage: single mindset; specific details/skills
Disadvantage: - no way of composing small parts into bigger
ones
Disadvantage: where do we go from here?

14

Introduction

Introductory Computing Options

Web design, multimedia
Advantage: exciting - attractive
Advantage: useful, builds a community
Disadvantage: skills - not concepts
Disadvantage: abstractions? - maybe
Disadvantage: where do we go from here?

15

Introduction

Introductory Computing Options

Programming as a computation -- algorithmics
public void quicksort(String source[]){
 String pivot = source[0];
 partition(pivot, source, 0, Array.length(source));
}

public void partition(String pivot,String source[],
 int low, int high){
 for (int i = low; i < high; i++){
 for j = high - 1; j > i; j--){
 ...
 }}
}

16

Introduction

Introductory Computing Options

Programming as a computation -- algorithmics
Advantage: serious thinking
Advantage: important foundations
Disadvantage: where do algorithms come from?
Disadvantage: explicit design of abstractions?
Disadvantage: how can we invent new ones?

17

Introduction

Introductory Computing Options

Language-driven programming
public static void main(String argv[]){
 System.out.println("Hello world");
}

18

Introduction

Introductory Computing Options

Language-driven programming
Advantage: real world
Advantage: real jobs
Disadvantage: many levels of complexity
Disadvantage: no explicit design of abstractions
Disadvantage: learning bad habits early

19

Programming and Design

Let's 'play' with the design of a simple game:

Fish swim across the screen, each is replaced by a new one when it
escapes or is eaten
Shark waits, swimming up and down in response to the keys, gets
hungrier as the time goes on
When the shark eats a fish it grows
The game ends when the shark dies of starvation

20

Programming and Design

• How do we build the game?
We need a frame, a panel with graphics to draw
We need to learn how to use the Timer

We need to learn how to use the onKeyEventListener

Then we can start thinking about the game actions
Technical details hide the program design

21

Programming and Design

• How do we build the game? - what are the parts we need?
How do we draw? - make a scene from rectangles, circles with
size, color
How do we animate? - create a scene for each tick
How do we respond to the keys? - define onKeyEvent
 method

No complicated system interaction - focus on the game actions

22

Introduction

Introductory Computing Options

Programming as design -- data centric
Advantages: focus on the design - not the language
Advantages: start with simple tasks - systematically
Advantages: introduce language features to support
abstractions

Advantages: the student learns to think

Disadvantages: ... this is not the real world...???

23

What is Introductory Computing?
Programming and Design

Data vs Information
Program Design
The Role of Testing
Designing Reusable Programs

Pedagogical Innovations
Our Experiences

24

Programming and Design

The main themes:
• Data vs. Information
• Program Design
• The Role of Testing
• Designing Reusable Programs: Abstractions

The team:
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt
Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx

25

Programming and Design

Data vs. Information
Think about the problem, what information is available?

• How do we build the game? - what are the parts we need?
There is a shark - that moves up and down
There is a fish - or more than one - that swims
All should stay within the game area

26

Programming and Design

Data vs. Information
Think about the problem, what information is available?

• How do we build the game? - what are the parts we need?
There is a shark - that moves up and down
There is a fish - or more than one - that swims
All should stay within the game area

27

Programming and Design

Data vs. Information
Think about the problem, what information is available?

• Shark: what do we know about him?
where is the shark
how hungry is the shark

• Fish: where is the fish?
How fast is it swimming?
Did it swim out of the game area?

• Game area: how wide, how tall?
Background color?

28

Programming and Design

Data vs. Information
• World consists of the area, the fish and the shark
• Shark

Position - consists of the x and y coordinate
Life time remaining

• Fish
Position - consists of the x and y coordinate
... maybe the speed

• Game area
width and height

we also have to draw the shapes
29

Programming and Design

Data vs. Information
Data definition for the world with CartPt : a class diagram

class World
Shark shark
Fish fish
Box box

class Box
int width
int height

class Fish
CartPt pos
int speed

class Shark
CartPt pos
int life

class CartPt

int x
int y

30

Programming and Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);
Box box = new Box(200, 200);
World w = new World(fish, shark, box);

31

Programming and Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box
Shark shark = new Shark(new CartPt(20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box
Box box = new Box(200, 200);
the box of width and height 200
World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

32

Programming and Design

Data vs. Information
• This is complicated enough to warrant separate attention
• We must make sure students understand what data the program

works with

• Design Recipe for Data Definition:
can it be represented by a primitive type? - select the type
are there several parts that represent one entity? - a class
are there several related variants? - a union of classes
add arrows to connect data definitions

• Convert information to data
• Interpret data as information

33

Programming and Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box
Shark shark = new Shark(new CartPt(20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box
Box box = new Box(200, 200);
the box of width and height 200
World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

34

Programming and Design

Designing the functionality

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one if it gets out of bounds
• Check if the shark ate the fish - if yes, replace the fish with a new

one
• Starve the shark as the time goes on, check if he is dead

35

Programming and Design

Designing the functionality

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one if it gets out of bounds
• Check if the shark ate the fish - if yes,

replace the fish with a new one
• Starve the shark as the time goes on, check if he is dead

36

Programming and Design

Designing the program

• How do you eat an elephant? - one bite at a time

One task one function/method

Make a wish list if the task is too complex

Think systematically about each small task

37

Programming and Design

Designing the program

• One task one function or method

• Make a wish list if the task is too complex

• Think systematically about each small task

38

Programming and Design

Select a sub-problem

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one if it gets out of bounds
• Check if the shark ate the fish - if yes,

replace the fish with a new one
• Starve the shark as the time goes on, check if he is dead

39

Programming and Design

One Task --- One Function/Method

• Check if the shark ate the fish

• Replace the fish with a new one

40

Programming and Design

One Task --- One Function/Method

Check if the shark ate the fish

Replace the fish with a new one
put the second task on a wish list

41

Programming and Design

Designing a Method: Step 1

Check if the shark ate the fish

What data do we need?
-- one Shark and one Fish

What class is responsible for this task?
-- could be either - choose Shark

-- the Fish becomes the method argument

What type of result do we produce?
-- a boolean value

42

Programming and Design

Designing a Method: Step 2

Purpose Statement and a Header:

In the class Fish :

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

What should we do next?
... well, when can the shark eat the fish?
... -- when they are close enough to each other

43

Programming and Design

Designing a Method: Step 3

Examples with Expected Outcomes:

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

The method produces a boolean result

... we need at least two examples

The shark and the fish far away from each other
The shark and the fish are close to each other

44

Programming and Design

Designing a Method: Step 3

Examples with Expected Outcomes:

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

shark.ateFist(fish1) ... expect false
shark.ateFist(fish2) ... expect true

45

Programming and Design

Designing a Method: Step 4

What should we do next?
Make an inventory of what we know about the shark and the fish

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc -- CartPt
this.life -- int
fishy.loc -- CartPt
fishy.speed -- int

it depends on how close are the this.loc and fishy.loc

46

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc -- CartPt
this.life -- int
fishy.loc -- CartPt
fishy.speed -- int

it depends on how close are the this.loc and fishy.loc

Remember: one task one function/method
Design a method boolean distTo(CartPt that) in the class
CartPt

47

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc -- CartPt
this.life -- int
fishy.loc -- CartPt
fishy.speed -- int

Design a method in the class CartPt
// compute the distance of this point to that
boolean distTo(CartPt that)

48

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc -- CartPt
this.life -- int
fishy.loc -- CartPt
fishy.speed -- int
this.loc.distTo(fishy.loc) -- int

Design a method in the class CartPt
// compute the distance of this point to that
boolean distTo(CartPt that)

49

Programming and Design

Designing a Method: Step 5

What should we do next?
We are now ready to design the body of the method
... one question remains:
-- how close does the fish have to be for the shark to eat it?
-- we decide it must be within 20
-- of whatever unit we use to measure the distance

Here is the complete method - we hope:

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
 return this.loc.distTo(fishy.loc) < 20;}

Are we done? ... NO 50

Programming and Design

Designing a Method: Step 6

What else needs to be done?
... how do we know we are correct?
... does the method work as we expected it to?

We already have examples with the expected outcomes!
Convert the examples into tests and test the method

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
 return this.loc.distTo(fishy.loc) < 20;}

51

Programming and Design

Designing a Method: Step 6 Tests

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
 return this.loc.distTo(fishy.loc) < 20;}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

checkExpect(shark.ateFist(fish1), false);
checkExpect(shark.ateFist(fish2), true;

52

Programming and Design

Designing a Method: Step 6 Tests

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
 return this.loc.distTo(fishy.loc) < 20;}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

checkExpect(shark.ateFist(fish1), false);
checkExpect(shark.ateFist(fish2), true);
... add more tests if needed

53

Programming and Design

Designing a Method: The DESIGN RECIPE

1: Problem analysis and data definition
2: Purpose statement and the header
3: Examples with expected outcomes
4: Inventory/Template of available data fields and methods
5: Method body
6: Tests

Each step is well defined
-- with a tangible result
-- with a guidance on what questions to ask

54

Programming and Design

Other sub-problems --- use the same design process

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one if it gets out of bounds
• Check if the shark ate the fish - if yes,

replace the fish with a new one
• Starve the shark as the time goes on, check if he is dead

55

Programming and Design

A complete program:

56

Programming and Design

The code for the fish and the shark not shown
-- all completely designed by the student
Student really understands the information and the data

What makes this possible?

Focus on understanding the data - information first
Testing support

57

Programming and Design

Testing Support
Java does not support comparing data by value
Defining such equality is hard for a novice
It increases the program complexity
Detracts from the focus on the program design

Learning to design tests, equality comparison, test reporting
-- is a topic on its own
-- we need pedagogy for that too

58

Programming and Design

Designing Abstractions

A skill on its own: transcends programming

motivated by observing repeated code patterns
students are taught to design abstractions
each abstraction motivates a new language construct or style

Java by Demand

59

Programming and Design

Designing Abstractions

Abstractions --- integrated throughout the course
motivated by observing repeated code patterns
students are taught to design abstractions

Designing abstractions: Design Recipe for Abstractions
Identify the differences between similar solutions
Replace the differences with parameters and rewrite the solution
Rewrite the original examples and test them again

60

Programming and Design

Designing Abstractions - Motivating Abstractions

Abstracting over similarities:
Classes with similar data abstract classes/interfaces
Lists of different data list of <T> generics

Classes with similar structure and methods Abstract Data
Types
Comparisons interfaces that represent a function object
Traversal of a container iterator

61

Programming and Design

Designing Abstractions - Examples of Abstractions

• Abstract classes: common fields, common concrete methods
• Generics: common structure of data

e.g. list of <T>
• Comparable, Comparator: common functional behavior
• Abstract Data Type

common functional representation of structures
add, remove, size, contains

• Iterators: abstracting over traversals

62

Programming and Design

Designing Abstractions - Why Teach Abstractions?

Eliminate code duplication - reduce maintenance costs
Design reusable code
Build libraries
Learn to use libraries

63

What is Introductory Computing?
Programming and Design
Pedagogical Innovations

Supporting the Novice Programmer: Language Levels
Teachpacks: Libraries for Novices
Testing Support
Self-Regulatory Learning
Pedagogical Intervention

Our Experiences

64

Pedagogical Innovations

Programming Environment Support:
• Reduce the syntax/complexity to what is necessary
• Allow the student to focus on the key concepts
• Feedback / error messages at user's level of understanding
• Prevent misuse of advanced features
• Libraries for interactive graphics and games
• Support a well documented test design

Add new features when the need becomes compelling

65

Pedagogical Innovations

Supporting the Novice Programmer: Language Levels

Programming language support at the novice level
• several levels of Java-like languages
• complexity added when student understands more
• new features support new program abstractions
• error messages are appropriate for a novice programmer

66

Pedagogical Innovations

Teachpacks: Libraries for Novices

Libraries that deal with graphics, events
• provide a novice-friendly environment
• hide the interaction with the system
• functional or imperative style
• work the same way in teaching languages and standard Java
• applets in standard Java

67

Pedagogical Innovations

Testing Support

Test library
Tests are written as a part of the program design
Test library suitable for the beginner
• Tests compare data by their values

handle collections of data
handle circularity
handle random choice
handle tests of Exceptions
... and more

• Test evaluation is automatic - compares data by their values
68

Pedagogical Innovations

Self-Regulatory Learning

Theory: encourage the learner to learn on her own
• identify steps in the learning process
• provide a guidance in how to achieve the next step
• provide a way to assess the success of each step

69

Pedagogical Innovations

Self-Regulatory Learning

Our Practice: The DESIGN RECIPE
• provides the steps in the data, program, abstraction design
• provides questions to ask at each step
• provides a way to assess the success of each step

70

Pedagogical Innovations

Pedagogical Intervention

Instructor asks at which step the student
is stuck - then follows with the questions for that step

One more illustration of why and how it works

71

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design recipe for designing classes:
The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

72

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design recipe for designing classes:
The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition- in (key)words
• A Shape is one of:

circle: given by a center point and the radius
square: given by the NW point and the size
combo: given by the top shape and the bottom shape

73

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Class diagram for the IShape class hierarchy:

Corresponds exactly to the narrative data definition

Students use the diagrams to represent the data definition

Method design follows the arrows of the diagram

74

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design Recipe: the steps in the design process:

• Problem Analysis and Data Definition -- understand
• Purpose & Header -- interface and documentation
• Examples -- show the use in context: design tests
• Template -- make the inventory of all available data
• Body -- only design the code after tests/examples
• Test -- convert the examples from before into tests

Clear set of questions to answer for each step
Outcomes that can be checked for correctness and completeness
Opportunity for pedagogical intervention 75

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design Recipe: the steps in the design process:

• Problem Analysis and Data Definition -- understand
• Purpose & Header -- interface and documentation
• Examples -- show the use in context: design tests
• Template -- make the inventory of all available data
• Body -- only design the code after tests/examples
• Test -- convert the examples from before into tests
Design foundation:
• Required documentation from the beginning
• Test-driven design from the beginning
• Focus on the structure of data and the structure of programs

76

What is Introductory Computing?
Programming and Design
Pedagogical Innovations
Our Experiences

University Dissemination
Resources

77

Our Experiences

Instructors in follow-up courses feel students are
much better prepared
Very low attrition rate (<5%)
Students are much more confident in their understanding of program
design

Dissemination:
Two very successful summer workshops for secondary school and
university teachers in 2003, 2004
Workshop in summer 2007, 2008, 2009 at four US locations
A growing number of followers

78

THANK YOU

Resources:

Web sites:
Main site for the TeachScheme/ReachJava! project:
http://www.teach-scheme.org
Lab materials, lecture notes, assignments:
http://www.ccs.neu.edu/home/vkp/HtDC.html
World libraries, Tester library: http://www.ccs.neu.edu/javalib

Java Power Tools: http://www.ccs.neu.edu/jpt

79

