Game Design in Object-Oriented Style:

Data, Tests, Programs
Viera Krfianova Proulx
Northeastern University

vkp@ccs.neu.edu

» What is Introductory Computing?

°© |Introductory Computing Options
© Programming: Why and How

Programming and Design
Pedagogical Innovations

Our Experiences

Introduction

Introductory Computing Options

- Programming as a game: Logo, Alice, Scratch

* Learning to use applications: Word, Excel, Database, Web
* Programming robots: Lego Mindstorms, Cricket

- Web design, multimedia

* Programming as a computation -- algorithmics

- Language-driven programming

* Programming as design -- data centric

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch

http://www.logo.com/imagine

& & & Logotron :: Imagine - Gallery

' E] @ @ http:/ /www.logo.com/imagine/gallery.html

~ Q- Adrion Q

|
[0 Apple (101} Home Gmail Isaac Lila [IMICT2007 IMICT-cd 213-flO7

213-sp08

390

java JPT JPT2.5.0 Amazon eBay Yahoo!

»

Logotron

educational software

e /home/about/products/support,

Imagine Logo

Enabling learners to do more by doing less...

Gallery of Work - 1

Here you will find two pages of some of the best projects created by
Imagine Logo users. If you produce something interesting that you think Download FREE demo

others would like to see, please let us know by emailing

support@logo.com with the message title Imagine Logo Gallery.

You need to have a suitably configured web browser, and the Imagine Logo

web plugin installed.

Partners with the teaching profession - Pioneers in Learning M

; buy online now!

Calling all First Logo,
WinLogo & SuperLogo Users

Use Creative Classroom
Online

Internet Explorer, Mozilla Firefox and Opera web browsers work with the Buy Creative Classroom

Imagine Logo plugin. You need to be running a Windows based operating

system (98,2000 or XP) too.

Enjoy...

Spiral Warld

Step by Step Activities
Twenty Things to Do with a
Computer - by Seymour
Papert & Cynthia Solomon
Design & evaluation of
Maths related programs for
Special Education

Imagine Logo Workbooks

Logopoint

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch

http://www.alice.org

W Abice [2.00 O4MR/F00D 11 S8R0 - OO rog ram 11 e Doe b mar ple Woer sk Sl oy Demo® lart o [e dified]

cvents |l-|l-'-l'|-'l|

Wl e el sl arl s, dio L (LR

@ World my first animation

Ward my Nrek animatsn

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch

http://scratch.mit.edu

home projects galleries support forums about my stuff Langua | 3

Q~RAT~H

imagine = program = share

Login or Signup for an account search

Download Scratch

Get the latest version

DOWNLOAD MOl of Scratch for
Windows or Mac.
Scratch@MIT Conference

Newest Projects See more
Join educators, researchers, and
other members of the worldwide
Scratch community at MIT on

July 24-26. Learn more

Featured Galleries

CRAZY JETIIII Driving Simulator Bloc party! El Cyclone103s Fa...
by Kewlman by O4lukeb by Dogdigg39

II. Seeking Feedba...

Featured Projects _ scratch kat pr...

See more

Scratch Club
Scratch Story Projects

Stories about how
you started to use
Scratch. Leave a

link if you have a
story you want to

DoYouKnow The States... Graffiti
by chkroc by Canni by 1tchy

Mimi - part 11

Introduction

Introductory Computing Options

Programming as a game: Logo, Alice, Scratch
© Advantage: nice images - excitement
© Advantage: tinkering - exploration
© Disadvantage: tinkering, not planning

© Disadvantage: (except Logo) - no way of composing small parts
into bigger ones

© Disadvantage: where do we go from here?

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web

http://wps.aw.com/aw_snyder_fluency_1/

PEARSON

T }(l Uen @f)’w Information Technology

Wesley Skills, Concepts, & Cay sabilities

' Inside: Student Resources | Home | Search | Help | Profile

Ha =

Addison Wesley Companion Website

LAWRENCE SNYDER Welcome to the Companion Web site for Fluency with Information Technology: Cor

- Capabilities, and Skills by Lawrence Snyder.
=‘ E

"-.-] .-'"--.ull;: /
i .:‘ e LAY
'-.‘fll. rmaton lec |1|.. Al 1)

Student Resources
Lab workbook, and supporting files from the book.

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web

http://LabView.com

LRl B T g ey e e Doy et w0 B g b
LA B e | e ma e Bar| r| B

(Do Duagram {LaSAITW C"-Sooros Doda)

L g R g e e e 9
il 4 mbin ren nagea o wiriabin aspiSeia The maea b Bhen sided b R perr pen Tl e
wil el AN et e ERR B F DA AN o L R i ROl By 48 TIT &
T e e e T R T T e
il T, ST Ll R, b e B il S,

Introduction

Introductory Computing Options

Learning to use applications: Word, Excel, Database, Web
° Advantage: useful skills
° Advantage: some understanding of computing (if done well)
© Disadvantage: skills, not concepts
° Disadvantage: not encouraging to design abstractions

© Disadvantage: where do we go from here?

10

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket

http://mindstorms.lego.com

OO0 LEGO.com MINDSTORMS NXTLOG —
E @ .hltp:,.’,fmindslorms.Iego.com,fNXTLOG,fdefault.aspx "'('Q' Adrion (D‘\.'l’
E@Z Apple (101} Home Gmail Isaac Lila IMICT2007 IMICT-cd 213-fl07 213-sp08 390 java JPT JPT25.0 Amazon eBay Yahoo! — :;S_;

Eif CHANGE REGION Yy

9 @ 9 == ﬂ

m l n n ETn rlm E [HOHE O COMHUNITY [NEWS [PRODUCTS

[Home - NXTLOG

NXTLOG:="® RULES L.D.D. ABOUT PROJECTS NEWS HELP

Welcome! | :__Featured Projects | :__ Latest Projects | | Top 5 Projects
Log in | ™|
Register for free | » |

Search |
Search I
FWE WANT - ;
1 Crash Lab{with the fl... Musichot ScanBot
@ = RrangerRick qgl0%9aac RCX-Inventor
I TT |
MINDSTORMS NXT NXT Bu... Broom Bot Quadruped 1
TO SHARE YOUR NXTLOGster JoeB360 TheFoxx
T PROIECT! - N N .
NXT PROJECT Vestas Windmill {turb... Rover Chasis Compact Tribot
_ robotica008 Murcielago53 NXTPenguind&5
1 Automatic Hand Washer The Amazing Ball Writ... Quad Runner
Buckskinn92 crazykid506 bbonahoom
TP-Bot 2008 Advanced Rubberband S... Valentines Box 2 11
Dino Marting rero57 MasterEnqgineer555

GET STARTED ¢ NXTIDg News “| :”I"-dpllJI'ar' :rags ”|

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket

http://www.cricket.org

12

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket

http://www.cricket.org

NOTE:

If Motor Gearbowx mowves
toward switch 2 at start of
routing, physically reverse
the red and green wire
connectors to the motor

CATES T COTTact ™ " T
Switch 1 a signal will be send to the Cricket Interface indicati
mator Gearbox has reachesd the outer edge limits of switch 1
The Interface will send a stop and then a reversing signal to t
which will now move the Motor and Gearbox -.llong the track b
wntil it come in contact with Switch Z

On contact with Switch 2 a signal will be send to the Cricket]
indicating that motor Gearbox has reached the outer edge limit
switch 2,

The Interface will sand a stop and then a reversing signal to t

which will now move the Motor and Gearbox along the track f§
wntil it comes in contact with Switch 1 again,

This cycle will continue over and aver automatically, until stof
This application could be used to move materials,
a mew location, then return back to the starting p
automatically,

This application might even represent an elevator
wertically, moving material, or ohjects to differg

Switch Hook-up

LS

13

Introduction

Introductory Computing Options

Programming robots: Lego Mindstorms, Cricket
© Advantage: engaging - exploration
© Advantage: interesting environment
© Disadvantage: single mindset; specific details/skills

° Disadvantage: - no way of composing small parts into bigger
ones

© Disadvantage: where do we go from here?

14

Introduction

Introductory Computing Options

Web design, multimedia
° Advantage: exciting - attractive
° Advantage: useful, builds a community
© Disadvantage: skills - not concepts
o Disadvantage: abstractions? - maybe

© Disadvantage: where do we go from here?

15

Introduction

Introductory Computing Options

Programming as a computation -- algorithmics

public void quicksort(String source[]) {
String pivot = source|[0];
partition (pivot, source, 0, Array.length(source))

}

public void partition(String pivot,String sourcel],
int low, int high) {
for (int i = low; i1 < high; i++) {
for § = high - 1; jJ > 1i; jJ--){

H)

16

Introduction

Introductory Computing Options

Programming as a computation -- algorithmics
© Advantage: serious thinking
o Advantage: important foundations
© Disadvantage: where do algorithms come from?
o Disadvantage: explicit design of abstractions?

© Disadvantage: how can we invent new ones?

17

Introduction

Introductory Computing Options

Language-driven programming

public static void main(String argv([]) {
System.out.println("Hello world") ;

}

18

Introduction

Introductory Computing Options

Language-driven programming
o Advantage: real world
° Advantage: real jobs
© Disadvantage: many levels of complexity
© Disadvantage: no explicit design of abstractions

© Disadvantage: learning bad habits early

19

Programming and Design

Let's 'play' with the design of a simple game:

Fish swim across the screen, each is replaced by a new one when it
escapes or is eaten

Shark waits, swimming up and down in response to the keys, gets
hungrier as the time goes on

When the shark eats a fish it grows

The game ends when the shark dies of starvation
20

Programming and Design

Programming and Design

Introduction

Introductory Computing Options

Programming as design -- data centric
° Advantages: focus on the design - not the language
© Advantages: start with simple tasks - systematically
© Advantages: introduce language features to support
abstractions

© Advantages: the student learns to think

° Disadvantages: ... this is not the real world...?7??

23

What is Introductory Computing?
» Programming and Design

© Data vs Information

° Program Design

° The Role of Testing

© Designing Reusable Programs

Pedagogical Innovations

Our Experiences

24

Programming and Design

The main themes:
- Data vs. Information
* Program Design
* The Role of Testing

 Designing Reusable Programs: Abstractions

The team:
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt

Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx

25

Programming and Design

Data vs. Information

Think about the problem, what information is available?

* How do we build the game? - what are the parts we need?
° There is a shark - that moves up and down
© There is a fish - or more than one - that swims

o All should stay within the game area

26

Programming and Design

Data vs. Information

Think about the problem, what information is available?

* How do we build the game? - what are the parts we need?
° There is a shark - that moves up and down
© There is a fish - or more than one - that swims

o All should stay within the game area

27

Programming and Design

Data vs. Information

Think about the problem, what information is available?

« Shark: what do we know about him?
o where is the shark

© how hungry is the shark

* Fish: where is the fish?
© How fast is it swimming?

© Did it swim out of the game area?

« Game area: how wide, how tall?

© Background color?

28

Programming and Design

Data vs. Information
« World consists of the area, the fish and the shark
« Shark
© Position - consists of the x and y coordinate
o Life time remaining
* Fish
© Position - consists of the x and y coordinate
°© ... maybe the speed
- Game area
© width and height

© we also have to draw the shapes

29

Programming and Design

Data vs. Information

Data definition for the world with CartPt : a class diagram

class World

Shark shark
Fish fish
Box box

class Box

int width
int height

class Fish

CartPt pos
int speed

class Shark

CartPt pos
int life

\

class CartPt
int x
int y

30

Programming and Design

Data vs. Information
Sample data

Fish fish = new Fish(new CartPt (200,

Shark shark = new Shark (new CartPt (20,

Box box = new Box (200, 200);

100),

World w = new World(fish, shark, box);

5);

100), 30);

31

Programming and Design

Data vs. Information
Sample data

Fish fish = new Fish(new CartPt (200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box

Shark shark = new Shark (new CartPt (20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box

Box box = new Box (200, 200);
the box of width and height 200

World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

32

Programming and Design

Data vs. Information
- This is complicated enough to warrant separate attention
- We must make sure students understand what data the program
works with
 Design Recipe for Data Definition:
© can it be represented by a primitive type? - select the type
© are there several parts that represent one entity? - a class
© are there several related variants? - a union of classes

© add arrows to connect data definitions

« Convert information to data

- Interpret data as information s

Programming and Design

Data vs. Information
Sample data

Fish fish = new Fish(new CartPt (200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box

Shark shark = new Shark (new CartPt (20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box

Box box = new Box (200, 200);
the box of width and height 200

World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

34

Programming and Design

Designing the functionality

* Move the shark up and down in response to the arrow keys
* Move the fish left as the time goes on
 Replace the fish with a new one if it gets out of bounds

- Check if the shark ate the fish - if yes, replace the fish with a new
one

- Starve the shark as the time goes on, check if he is dead

35

Programming and Design

Designing the functionality

* Move the shark up and down in response to the arrow keys
* Move the fish left as the time goes on
* Replace the fish with a new one if it gets out of bounds

- Check if the shark ate the fish - if yes,
replace the fish with a new one

- Starve the shark as the time goes on, check if he is dead

36

Programming and Design

Designing the program

- How do you eat an elephant? - one bite at a time
°© One task __ one function/method
© Make a wish list if the task is too complex

© Think systematically about each small task

37

Programming and Design

Designing the program
- One task _ one function or method
- Make a wish list if the task is too complex

 Think systematically about each small task

38

Programming and Design

Select a sub-problem

* Move the shark up and down in response to the arrow keys
* Move the fish left as the time goes on
* Replace the fish with a new one if it gets out of bounds

- Check if the shark ate the fish - if yes,
replace the fish with a new one

- Starve the shark as the time goes on, check if he is dead

39

Programming and Design

One Task --- One Function/Method
« Check if the shark ate the fish

- Replace the fish with a new one

40

Programming and Design

One Task --- One Function/Method
Check if the shark ate the fish

Replace the fish with a new one

put the second task on a wish list

41

Programming and Design

Designing a Method: Step 1
Check if the shark ate the fish

What data do we need?

-- one Shark and one Fish

What class is responsible for this task?

-- could be either - choose Shark

-- the Fish becomes the method argument

What type of result do we produce?

--a boolean value

42

Programming and Design

Designing a Method: Step 2
Purpose Statement and a Header:

In the class Fish :

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

What should we do next?
... well, when can the shark eat the fish?

... == when they are close enough to each other

43

Programming and Design

Designing a Method: Step 3
Examples with Expected Outcomes:

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

The method produces a boolean result

... we need at least two examples

The shark and the fish far away from each other

The shark and the fish are close to each other

44

Programming and Design

Designing a Method: Step 3
Examples with Expected Outcomes:

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

Fish fishl = new Fish (new CartPt (200, 100), 5);
Fish fish2 = new Fish(new CartPt (25, 100), 5);
Shark shark = new Shark (new CartPt (20, 100), 30);

shark.ateFist (fishl) ... expect false
shark.ateFist (fish2) ... expect true

45

Programming and Design

Designing a Method: Step 4

What should we do next?

Make an inventory of what we know about the shark and the fish

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

this.loc -—- CartPt
this.life -- int
fishy.loc -—- CartPt
fishy. speed -- int

it depends on how close are the this.loc and fishy.loc

46

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

this.loc -—- CartPt
this.life -- int
fishy.loc -—- CartPt
fishy.speed -- int

it depends on how close are the this.loc and fishy.loc

Remember: one task __ one function/method

Design a method boolean distTo (CartPt that) inthe class

CartPt
47

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

this.loc -—- CartPt
this.life -- int
fishy.loc -—- CartPt
fishy.speed -- int

Design a method in the class CartPt
// compute the distance of this point to that

boolean distTo (CartPt that)

48

Programming and Design

Designing a Method: Step 4 Inventory/Template

// check if this shark ate the given fish
boolean ateFish (Fish fishy){...}

this.loc -—- CartPt
this.life -—- int
fishy.loc -—- CartPt
fishy.speed -- int
this.loc.distTo(fishy.loc) -- int

Design a method in the class CartPt
// compute the distance of this point to that

boolean distTo (CartPt that)

49

Programming and Design

Designing a Method: Step 5
What should we do next?
We are now ready to design the body of the method

... One question remains:
-- how close does the fish have to be for the shark to eat it?

-- we decide it must be within 20
-- of whatever unit we use to measure the distance

Here is the complete method - we hope:

// check if this shark ate the given fish
boolean ateFish (Fish fishy) {
return this.loc.distTo(fishy.loc) < 20;}

Are we done? ... NO 50

Programming and Design

Designing a Method: Step 6

What else needs to be done?

... how do we know we are correct?

... does the method work as we expected it to?

We already have examples with the expected outcomes!

Convert the examples into tests and test the method

// check if this shark ate the given fish
boolean ateFish (Fish fishy) {
return this.loc.distTo(fishy.loc) < 20;}

51

Programming and Design

Designing a Method: Step 6 Tests

// check if this shark ate the given fish
boolean ateFish (Fish fishy) {
return this.loc.distTo(fishy.loc) < 20;}

Fish fishl = new Fish (new CartPt (200, 100), 5);
Fish fish2 = new Fish(new CartPt (25, 100), 5);
Shark shark = new Shark (new CartPt (20, 100), 30);

checkExpect (shark.ateFist (fishl), false);
checkExpect (shark.ateFist (fish2), true;

52

Programming and Design

Designing a Method: Step 6 Tests

// check if this shark ate the given fish
boolean ateFish (Fish fishy) {
return this.loc.distTo(fishy.loc) < 20;}

Fish fishl = new Fish (new CartPt (200, 100), 5);
Fish fish2 = new Fish(new CartPt (25, 100), 5);
Shark shark = new Shark (new CartPt (20, 100), 30);

checkExpect (shark.ateFist (fishl) , false);
checkExpect (shark.ateFist (fish2), true);
... add more tests if needed

53

Programming and Design

Designing a Method: The DESIGN RECIPE

1: Problem analysis and data definition

2: Purpose statement and the header

3: Examples with expected outcomes

4: Inventory/Template of available data fields and methods
5: Method body

6: Tests

Each step is well defined
-- with a tangible result
-- with a guidance on what questions to ask

54

Programming and Design

Other sub-problems --- use the same design process

* Move the shark up and down in response to the arrow keys
* Move the fish left as the time goes on
* Replace the fish with a new one if it gets out of bounds

- Check if the shark ate the fish - if yes,
replace the fish with a new one

- Starve the shark as the time goes on, check if he is dead

55

Programming and Design

A complete program:

S/ to represent on ocean world
closs OceanWorld extends World{
Shark shark;
IloFish fish;
int WIOTH = 208;
int HEIGHT = 20@;

OceanWorld{Shark shark, ILoFish fish) {
this.shark = shark;
this.fish = fish;

1

S/ start the world and the timer
boolean goll) { return this.bigBong{208, 208, B.BS%; 3

A4 produce a new OceanWorld after one minute elapsed:
S5 move the fish, starve the shark, check if the fish is eaten or hos escaped
World onTick() [
F7if the shark found fish, fed the shark, replace the fish with @ new one
if (this.fish.isFood{this.shark)){
return new DceanWorld{this.shark.getFatter(),
this.fish.feedShark{shark’’;

b

S51F the shark starved to death, end the world
elze [if{this.shark.iz0ead{3) [
return this.end0f¥orld{"The shark starved to death"};

1
S/ no special events, just move the fish ond starve the shark
else [56

return new DceanWorld{this.shark.onTick({), this.fish.onTick{}7;

11

Programming and Design

The code for the fish and the shark not shown
-- all completely designed by the student

Student really understands the information and the data
What makes this possible?

Focus on understanding the data - information first

Testing support

57

Programming and Design

Testing Support

Java does not support comparing data by value
Defining such equality is hard for a novice

It increases the program complexity

Detracts from the focus on the program design

Learning to design tests, equality comparison, test reporting
-- Is a topic on its own

-- we need pedagogy for that too

58

Programming and Design

Designing Abstractions
A skill on its own: transcends programming

© motivated by observing repeated code patterns
© students are taught to design abstractions

© each abstraction motivates a new language construct or style

Java by Demand

59

Programming and Design

Designing Abstractions

Abstractions --- integrated throughout the course
© motivated by observing repeated code patterns

© students are taught to design abstractions

Designing abstractions: Design Recipe for Abstractions
o |dentify the differences between similar solutions
© Replace the differences with parameters and rewrite the solution

© Rewrite the original examples and test them again

60

Programming and Design

Designing Abstractions - Motivating Abstractions

Abstracting over similarities:
o Classes with similar data » abstract classes/interfaces
°© Lists of different data » list of <T> » generics

o Classes with similar structure and methods » Abstract Data
Types

o Comparisons = interfaces that represent a function object

o Traversal of a container » iterator

61

Programming and Design

Designing Abstractions - Examples of Abstractions

- Abstract classes: common fields, common concrete methods
- Generics: common structure of data

©e.qg. listof <T>
- Comparable, Comparator: common functional behavior

- Abstract Data Type
common functional representation of structures

° add, remove, size, contains

 terators: abstracting over traversals

62

Programming and Design

Designing Abstractions - Why Teach Abstractions?

Eliminate code duplication - reduce maintenance costs
Design reusable code
Build libraries

Learn to use libraries

63

What is Introductory Computing?
Programming and Design
» Pedagogical Innovations

© Supporting the Novice Programmer: Language Levels
© Teachpacks: Libraries for Novices

o Testing Support

o Self-Regulatory Learning

© Pedagogical Intervention

Our Experiences

64

Pedagogical Innovations

Programming Environment Support:

- Reduce the syntax/complexity to what is necessary
- Allow the student to focus on the key concepts

- Feedback / error messages at user's level of understanding
- Prevent misuse of advanced features

- Libraries for interactive graphics and games

« Support a well documented test design

Add new features when the need becomes compelling

65

Pedagogical Innovations

Supporting the Novice Programmer: Language Levels

Programming language support at the novice level

- several levels of Java-like languages

- complexity added when student understands more
- new features support new program abstractions

* error messages are appropriate for a novice programmer

66

Pedagogical Innovations

Teachpacks: Libraries for Novices

Libraries that deal with graphics, events

* provide a novice-friendly environment

- hide the interaction with the system

- functional or imperative style

- work the same way in teaching languages and standard Java

- applets in standard Java

67

Pedagogical Innovations

Testing Support

Test library
Tests are written as a part of the program design
Test library suitable for the beginner
» Tests compare data by their values
° handle collections of data
© handle circularity
© handle random choice
© handle tests of Exceptions
© ... and more

* Test evaluation is automatic - compares data by their values

68

Pedagogical Innovations

Self-Regulatory Learning

Theory: encourage the learner to learn on her own
- identify steps in the learning process
* provide a guidance in how to achieve the next step

* provide a way to assess the success of each step

69

Pedagogical Innovations

Self-Regulatory Learning

Our Practice: The DESIGN RECIPE
- provides the steps in the data, program, abstraction design
» provides questions to ask at each step

» provides a way to assess the success of each step

70

Pedagogical Innovations

Pedagogical Intervention

Instructor asks at which step the student
IS stuck - then follows with the questions for that step

One more illustration of why and how it works

71

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design recipe for designing classes:
The problem statement

© we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

72

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning
Design recipe for designing classes:
The problem statement

© we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...
Data Definition- in (key)words
- A Shape is one of:
° circle: given by a center point and the radius
© square: given by the NW point and the size

© combo: given by the top shape and the bottom shape

73

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning

Class diagram for the IShape class hierarchy:

S -+
| IShape |€<-----==—————cc—c———--
S -+
S -+
P
I
I I I
fom e + e et + e
| Circle | | Sgquare | | Ceombo
fom e + e et + e
| Peint center | | Peint nw | | IShape top
| int radius | | int size | | IShape bottem
fom e + e et + e

Corresponds exactly to the narrative data definition

————— +
|
|
|
|
|
|
|

+ |

| |

+ |

| -———+

| -———+

+

74

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning

Design Recipe: the steps in the design process:

* Problem Analysis and Data Definition -- understand

* Purpose & Header -- interface and documentation

- Examples -- show the use In context: design tests

- Template -- make the inventory of all available data
- Body -- only design the code after tests/examples

-« Test -- convert the examples from before into tests

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and completeness

Opportunity for pedagogical intervention

75

Pedagogical Innovations

Pedagogical Intervention - Self-Regulatory Learning

Design Recipe: the steps in the design process:

* Problem Analysis and Data Definition -- understand

* Purpose & Header -- interface and documentation

- Examples -- show the use In context: design tests

- Template -- make the inventory of all available data
- Body -- only design the code after tests/examples
-« Test -- convert the examples from before into tests
Design foundation:

* Required documentation from the beginning

- Test-driven design from the beginning -6

e Fnriiec nn tha cetriirtiira nf Aata and tha etriirhiira nf nrnArame

What is Introductory Computing?
Programming and Design
Pedagogical Innovations

» Our Experiences

© University Dissemination
° Resources

77

Our Experiences

Instructors in follow-up courses feel students are
much better prepared

Very low attrition rate (<5%)

Students are much more confident in their understanding of program
design

Dissemination:

Two very successful summer workshops for secondary school and
university teachers in 2003, 2004

Workshop in summer 2007, 2008, 2009 at four US locations

A growing number of followers

78

THANK YOU

Resources:

Web sites:

Main site for the TeachScheme/Reachdaval! project:
http://www.teach-scheme.org

Lab materials, lecture notes, assignments:
http:/www.ccs.neu.edu/home/vkp/HtDC.html

World libraries, Tester library: http://www.ccs.neu.edu/javalib

Java Power Tools: http://www.ccs.neu.edu/jpt

79

