
The Pedagogy of Program Design

Professor Viera Krňanová Proulx
College of Computer and Information Science

Northeastern University
Boston, Massachusetts, USA

DIDINFO 2009, Brusno, Slovakia
March 25, 2009

1



Outline:

Curriculum Foundation
• Design Recipes
• Supporting Software
Curriculum Components
• BOOTSTRAP - young children
• TeachScheme - secondary schools, universities
• ReachJava - secondary schools, universities
Pedagogy of Program Design
• Design Recipes: Details
Our Experiences; Resources

2



Curriculum Foundation

Function design based on algebra
• every function consumes data, produces new data
• no change of state; no input/output difficulties
Design Recipe for understanding the design process
• several steps, clearly defined
• each step has goals and measure of success
Understanding information versus data
• represent information as data
• interpret the information that data represents
Supporting software: to focus on the essential concepts
• language levels and test support
• libraries for graphics, interaction, client/server 3



Understanding the design process

DESIGN RECIPE for functions
• 1: Problem analysis and data definition
• 2: Purpose statement and the header
• 3: Examples with expected outcomes
• 4: Inventory/Template of available data fields and methods
• 5: Function body
• 6: Tests
Pedagogical advantages:
Each step is well defined
-- with a tangible result
-- with a guidance on what questions to ask

DESIGN RECIPEs for data definitions, abstractions...
4



DESIGN RECIPE for data definitions

DESIGN RECIPE for data definitions
• can it be represented by a primitive type? - select the type
• are there several parts that represent one entity? - a class
• are there several related variants? - a union of classes
• add arrows to connect data definitions

Make examples of data
• convert information to data
• interpret data as information

5



Supporting software: to focus on the concepts

Software appropriate for students current knowledge
Language levels
• add complex features gradually
Test support
• it should be easy to test every function
Supporting libraries:  students focus on the essentials
• graphics: define color, size, shape/image, position
• interactions: define scene after a time tick, key or mouse event
• client/server programming: design the communication protocol

6



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

7



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

8



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

9



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

10



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

11



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

12



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
Goals:  to understand mathematical principles of computation

13



Curriculum Components: BOOTSTRAP

6 - 8 grade afterschool program
10 lessons, 90 minutes each
  

14



Curriculum Components: BOOTSTRAP

Student code:

15



Curriculum Components: BOOTSTRAP

Pedagogy
simple but exact language
• expressions: circles of evaluation
• functions: substitution
• conditionals

library with required functions:
(update-object x)
(update-target-x x)
(update-target-y y)
(update-player dir)
(collide tx ty ox oy)

             

• images are data
16



Curriculum Components: TeachScheme!

How to Design Programs
Interactive functional environment
Simple Scheme-like language(s)
Focus on understanding the design of data
The shape of a function follows the shape of the data

Authors:
Matthias Felleisen, Robert Bruce Findler,
 Matthew Flatt, Shriram Krishnamurthi

17



Curriculum Components: TeachScheme!

How to Design Programs
Textbook free online:  htdp.org
DrScheme programming environment: DrScheme.org
Tools for the programmer:
• Stepper:  shows expression evaluation
• Test support:  evaluates tests, reports results
• Test coverage:  show program parts not tested
• Dependency arrows:  definition to use, or use to definition

http://www.teach-scheme.org/

18



Curriculum Components: TeachScheme!

DrScheme

19



Curriculum Components: TeachScheme!

DrScheme

20



Curriculum Components: ReachJava

How to Design Classes
Textbook draft: 670 pages  used in classrooms for five years
DrScheme programming environment: ProfessorJ languages
• language levels
• testing support
• libraries for interective graphics based games

Curriculum materials:
• Laboratory tutorials/projects
• Assignments
Standard Java support

21



The Pedagogy of Program Design

The main themes:
• Data vs. Information
• Program Design
• The Role of Testing
• Designing Reusable Programs: Abstractions

The team:
Matthias Felleisen, Robert Bruce Findler, Matthew Flatt
Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx

22



The Pedagogy of Program Design

Let's 'play' with the design of a simple game:

      

Fish swim across the screen, each is replaced by a new one when it
escapes or is eaten
Shark waits, swimming up and down in response to the keys, gets
hungrier as the time goes on
When the shark eats a fish it grows
The game ends when the shark dies of starvation

23



The Pedagogy of Program Design

      

• How do we build the game?
We need a frame, a panel with graphics to draw
We need to learn how to use the  Timer

We need to learn how to use the  onKeyEventListener

Then we can start thinking about the game actions
Technical details hide the program design 24



The Pedagogy of Program Design

      

• How do  we  build the game? - what are the parts we need?
How do we draw? - make a scene from rectangles, circles with
size, color
How do we animate? - create a scene for each tick
How do we respond to the keys? - define  onKeyEvent
 method

No complicated system interaction - focus on the game actions 25



The Pedagogy of Program Design

Data vs. Information
Think about the problem, what information is available?

• How do we build the game? - what are the parts we need?
There is a shark - that moves up and down
There is a fish - or more than one - that swims
All should stay within the game area

26



The Pedagogy of Program Design

Data vs. Information
Think about the problem, what information is available?

• How do we build the game? - what are the parts we need?
There is a  shark - that moves up and down
There is a  fish - or more than one - that swims
All should stay within the   game area

27



The Pedagogy of Program Design

Data vs. Information
Think about the problem, what information is available?

• Shark: what do we know about him?
where is the shark
how hungry is the shark

• Fish: where is the fish?
How fast is it swimming?
Did it swim out of the game area?

• Game area: how wide, how tall?
Background color?

28



The Pedagogy of Program Design

Data vs. Information
• World consists of the area, the fish and the shark
• Shark

Position - consists of the x and y coordinate
Life time remaining

• Fish
Position - consists of the x and y coordinate
... maybe the speed

• Game area
width and height

we also have to draw the shapes
29



The Pedagogy of Program Design

Data vs. Information
Data definition for the world with  CartPt : a class diagram

class World
Shark shark
Fish fish
Box box
   

class Box
int width
int height 

   
class Fish
CartPt pos 
int speed

   
class Shark
CartPt pos
int life

   

                
class CartPt

int x
int y

30



The Pedagogy of Program Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
   
Shark shark = new Shark(new CartPt(20, 100), 30);
   
Box box = new Box(200, 200);
   
World w = new World(fish, shark, box);
   

31



The Pedagogy of Program Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box
Shark shark = new Shark(new CartPt(20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box
Box box = new Box(200, 200);
the box of width and height 200
World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

32



The Pedagogy of Program Design

Data vs. Information
• This is complicated enough to warrant separate attention
• We must make sure students understand what data the program

works with

• Design Recipe for Data Definition:
can it be represented by a primitive type? - select the type
are there several parts that represent one entity? - a class
are there several related variants? - a union of classes
add arrows to connect data definitions

• Convert information to data
• Interpret data as information

33



The Pedagogy of Program Design

Data vs. Information
Sample data
Fish fish = new Fish(new CartPt(200, 100), 5);
a fish that swims at speed 5 starting from the mid-right of the box
Shark shark = new Shark(new CartPt(20, 100), 30);
a shark with 30 lives starting 20 pixels in from the mid-left of the box
Box box = new Box(200, 200);
the box of width and height 200
World w = new World(fish, shark, box);
the scene 200 by 200 with one fish on the right, one shark on the left

34



The Pedagogy of Program Design

Designing the functionality

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one if it gets out of bounds
• Check if the shark ate the fish - if yes, replace the fish with a new

one
• Starve the shark as the time goes on, check if he is dead

35



The Pedagogy of Program Design

Designing the functionality

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one  if it gets out of bounds
• Check if the shark ate the fish - if yes, 

replace the fish with a new one
• Starve the shark as the time goes on,  check if he is dead

36



The Pedagogy of Program Design

Designing the program
How do you eat an elephant?  one bite at a time

One task    one function/method

Make a wish list (a list of things to do later)
... when the task is too complex

Think systematically about each small task

37



The Pedagogy of Program Design

Designing the program: Select a sub-problem

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one  if it gets out of bounds
• Check if the shark ate the fish - if yes, 

replace the fish with a new one
• Starve the shark as the time goes on,  check if he is dead

38



The Pedagogy of Program Design

Designing the program: One Task --- One Function/Method

• Check if the shark ate the fish

• Replace the fish with a new one

39



The Pedagogy of Program Design

Designing the program: One Task --- One Function/Method

Check if the shark ate the fish

Replace the fish with a new one
put the second task on a wish list

40



The Pedagogy of Program Design

Method Design - Step 1: Problem Analysis, Data Definition

Check if the shark ate the fish

What data do we need?
-- one  Shark  and one  Fish

What class is responsible for this task?
-- could be either - choose  Shark

-- the  Fish  becomes the method argument 

What type of result do we produce?
-- a  boolean  value 

41



The Pedagogy of Program Design

Method Design - Step 2: Purpose Statement and the Header

In the class  Fish :

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

What should we do next?
... well, when can the shark eat the fish?
... -- when they are close enough to each other

We can now reason about the method behavior

42



The Pedagogy of Program Design

Method Design - Step 3: Examples with Expected Outcomes

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

The method produces a  boolean  result

... we need at least two examples

The shark and the fish far away from each other
The shark and the fish are close to each other

43



The Pedagogy of Program Design

Method Design - Step 3: Examples with Expected Outcomes

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

shark.ateFist(fish1) ... expect false
shark.ateFist(fish2) ... expect true

44



The Pedagogy of Program Design

Method Design - Step 4: Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

Make an inventory of what we know about the shark and the fish

this.loc         -- CartPt
this.life        -- int
fishy.loc        -- CartPt
fishy.speed      -- int

it depends on how close are the  this.loc  and  fishy.loc

45



The Pedagogy of Program Design

Method Design - Step 4: Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc         -- CartPt
this.life        -- int
fishy.loc        -- CartPt
fishy.speed      -- int

it depends on how close are the  this.loc  and  fishy.loc

Remember: one task    one function/method
Design a method  boolean distTo(CartPt that)  in the class 
CartPt

46



The Pedagogy of Program Design

Method Design - Step 4: Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc         -- CartPt
this.life        -- int
fishy.loc        -- CartPt
fishy.speed      -- int

Design a method  in the class CartPt
// compute the distance of this point to that
boolean distTo(CartPt that)

47



The Pedagogy of Program Design

Method Design - Step 4: Inventory/Template

// check if this shark ate the given fish
boolean ateFish(Fish fishy){...}

this.loc                    -- CartPt
this.life                   -- int
fishy.loc                   -- CartPt
fishy.speed                 -- int
this.loc.distTo(fishy.loc)  -- int

Design a method  in the class CartPt
// compute the distance of this point to that
boolean distTo(CartPt that)

48



The Pedagogy of Program Design

Method Design - Step 5: Method Body

Designing method body:
... one question remains:
-- how close does the fish have to be for the shark to eat it?

  -- we decide it must be within 20
  -- of whatever unit we use to measure the distance

Here is the complete method - we hope:

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
  return this.loc.distTo(fishy.loc) < 20;}

Are we done? ...  NO
49



The Pedagogy of Program Design

Method Design - Step 6: Tests

What else needs to be done?
... how do we know we are correct?
... does the method work as we expected it to?

We already have examples with the expected outcomes!
Convert the examples into tests and test the method

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
  return this.loc.distTo(fishy.loc) < 20;}

50



The Pedagogy of Program Design

Method Design - Step 6: Tests

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
  return this.loc.distTo(fishy.loc) < 20;}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

checkExpect(shark.ateFist(fish1), false);
checkExpect(shark.ateFist(fish2), true);

51



The Pedagogy of Program Design

Method Design - Step 6: Tests

// check if this shark ate the given fish
boolean ateFish(Fish fishy){
  return this.loc.distTo(fishy.loc) < 20;}

Fish fish1 = new Fish(new CartPt(200, 100), 5);
Fish fish2 = new Fish(new CartPt(25, 100), 5);
Shark shark = new Shark(new CartPt(20, 100), 30);

checkExpect(shark.ateFist(fish1), false);
checkExpect(shark.ateFist(fish2), true);
... add more tests if needed

52



The Pedagogy of Program Design

Designing a Method: The DESIGN RECIPE

1: Problem analysis and data definition
2: Purpose statement and the header
3: Examples with expected outcomes
4: Inventory/Template of available data fields and methods
5: Method body
6: Tests

Each step is well defined
-- with a tangible result
-- with a guidance on what questions to ask

53



The Pedagogy of Program Design

Other sub-problems --- use the same design process

• Move the shark up and down in response to the arrow keys
• Move the fish left as the time goes on
• Replace the fish with a new one  if it gets out of bounds
• Check if the shark ate the fish - if yes, 

replace the fish with a new one
• Starve the shark as the time goes on,  check if he is dead

54



The Pedagogy of Program Design

Designing Abstractions

A skill on its own: transcends programming

motivated by observing repeated code patterns
students are taught to design abstractions
each abstraction motivates a new language construct or style

55



The Pedagogy of Program Design

Designing Abstractions - Why Teach Abstractions?

Eliminate code duplication - reduce maintenance costs
Design reusable code
Build libraries
Learn to use libraries

56



Software Support

Essential for students to understand the concepts

• Language levels
• Exploration of the program behavior and evaluation
• Test design, evaluation, reporting
• Graphics and interactions

57



Software Support

Graphics and interactions

• Drawing with minimal work needed
• In Scheme: images are data
• Games: inteface with a methods to program the behavior:

onTick()  produce the scene after one clock tick

onKeyEvent(String ke)
 produce the scene in response to the key press ke

bigBang(width, height speed)
 run the animation of the given size at the given speed

• Support for client/server programming with messages

58



Experiences

BOOTSTRAP
• schools in five states, summer camps: over the past four years

TeachScheme!
• 700 secondary schools, many universities

excellent results over the past 15 years
textbook translated into Polish, Spanish, German, ...

ReachJava -- How to Design Classes
• a number of universities - very good results
• workshops for teachers/instructors over the past five years

Testing Library
• a number of schools and universities - great response

59



THANK YOU

Resources

Web sites:
Main site for the TeachScheme/ReachJava! project: 
http://www.teach-scheme.org

Lab materials, lecture notes, assignments: 
http://www.ccs.neu.edu/home/vkp/HtDC.html

Tester library, World libraries:  http://www.ccs.neu.edu/javalib

My home page:  http://www.ccs.neu.edu/home/vkp

60


