
WRITING ACROSS THE COMPUTER SCIENCE CURRICULUM

Harriet J. Fell Viera K. Proulx John Casey
College of Computer Science, Northeastern University

Boston, Massachusetts 02115
fell@ccs.neu.edu vkp@ccs.neu.edu jcasey@ccs.neu.edu

ABSTRACT

At our university, as at many others across the country,
there is a movement to integrate the common core subjects
with the disciplinary studies. While in the past writing has
been a domain of English departments, the new trend is
‘writing across curriculum’. It is clear that effective written
and oral communication skills are critical for the successful
computer professional.

We present suggestions for writing assignments that
complement the main themes of computer courses from
introductory to advanced levels. While some of these have
appeared in the literature, others are new. We report on our
experience with these assignments and reflect on how they
enhance the computer science curriculum.

INTRODUCTION

A computer scientist must be able to clearly express his or
her ideas. A computer only does what it is programmed to
do, so it is the programmer’s task to cover all
contingencies. It has been shown numerous times, e.g. [1],
that understanding of the problem and the ability to talk
about it come hand-in-hand. In addition, a computer
scientist does not work in a vacuum. The need to
communicate one’s ideas to coworkers, clients, and
supervisors is becoming critical for success in the field.
The need for communication skills is not limited to the
field of computer science, as can be seen from the recent
emphasis in colleges on ‘writing across curriculum’.

Our university recently developed a plan [5] to provide a
common experience for students in all disciplines. It
includes the following directive:

These skills--effective thinking, effective communication,
information literacy, and interpersonal skills--cannot be
learned in a vacuum.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee.
SIGCSE’96, 2/96 Philadelphia, PA USA.
Copyright 1996 ACM 0-89791-757-X/96/0002…$3.50.

Rather, they are best acquired while learning information
and ideas across a broad range of arts and sciences
courses and in-depth, within a specific discipline.

The outcomes can and should be integrated with the study
of specific subjects and explicitly identified by instructors
as course objectives. General education and study in the
major will become inexorably intertwined.

In response to this directive, we have expanded many
existing assignments to include writing components. This
forced the students to reflect on the concepts explored in
the assignments and they often produced better programs as
a result of this reflection.

We start by summarizing the types of computer science
writing assignments reported in the recent literature. We
then describe the types of writing assignments used in our
computer science courses, the rationale behind them, and
the impact on students performance. We include samples
of student’s writing and point out ways in which we plan
to expand our writing requirements.

SUMMARY OF WRITING IN CS COURSES

In the past, writing in the computer science curriculum has
been restricted to specific courses. Students wrote
extensive documents in the software design courses and
wrote reviews and essays in courses that focused on social
issues related to computing. Some programs offered a
separate technical writing course, often taught by the
English department faculty. Finally, a capstone of many
programs was some form of senior presentation - a project,
a thesis, or a report. Clearly, most of the writing was
some type of paper or essay. Several recent papers that
emphasize the importance of writing in computer science
give as examples only this type of writing [2, 11].

In [11] we find a shocking statement that in a group of
about 80 seniors in a Programming Languages course over
one quarter of the students had never written a term paper.
Gross-Davis [4] stresses that “improving your students
writing is your responsibility.” She suggests that you
regularly assign brief writing exercises and describes many
possible assignments for science classes. Most of her
suggestions involve writing essays of at least one page in
length.

In recent papers we see the emergence of a new type of
writing in computer science courses. Typically these
assignments are only a part of a larger exercises and the
goal is to help students focus on the main concepts and
reinforce the topics related to the exercise. One new type of
exercise is the design and analysis of quantitative
experiments [6, 8]. Students form a hypothesis, construct
a model and make a prediction, design an experiment and
collect data, and analyze the results. The second type of
writing assignment appears in closed laboratories for
introductory courses [7]. The goal is to reinforce and give
a discipline-specific context to written and oral
communication skills by including at the end of a lab
written summation reports and replies to guided questions.
Another method is to ask students to analyze other
student’s user documentation for clarity and completeness
or analyze another student’s design [9]. Additionally, S.
Shum’s students [10] use WEB (software that manages the
source code and documentation interleaving) for
documenting their programs.

We need to prepare students for more extensive writing
projects by including simple, short writing components as
an integral part of early programming and lab assignments.
In addition to improved communication skills, students are
led to reflect on the lessons learnt in these assignments
which leads to deeper understanding of the new concepts.
We show, how a series of short, simple writing
assignments can be integrated into all computer science
course and comment on the multiple benefits of this
approach.

WRITING IN CS1 AND CS2

The first computer science course usually focuses on the
skills needed to clearly express an algorithm for solving a
given problem. Writing is often limited to adding
comments to “document” their code. We have found
many other opportunities for students to practice their
writing skills by extending existing assignments. These
assignments make it clear to students that the ability to
communicate in writing is integral to success in computer
science. We state briefly each assignment or type of
assignment and follow with comments on its goals and its
place in the overall first year curriculum.

• Describe as clearly as you can the rules for a board
game a card game, or a team sport with which you
are familiar.

We gave students this assignment as a part of simple
diagnostics to evaluate their learning and
communications style. This assignment provided a
foundation for class discussion about the need for
precise formulation of each algorithm before a program
is written. A short sample of one student’s report and
the open questions it provokes are shown here:

The game of golf is a sport for the individual where a
series of different sized and shaped clubs are used to
strike a small ball into a hole distances ranging from
300-600 yards. The simple object of the game is to
utilize the least amount of strikes in dropping your ball
into the hole. Usually 18 holes are played, but
variations are acceptable. The player resulting with the
least score when the entirety of holes is played wins.

Problems for discussion:
• Do the players take turns?
• Do they all start each hole at the same time?
• What is the field surface?
• Can one player’s ball hit a ball of another player?
• What happens if it does?

• Describe your computing environment. What is
the make and model of your computer? What
appears on the screen?

In the first lab students learn about the Macintosh
computer, networks, hard drive, floppy disks, folders,
mouse, projects, and see the first program. By asking
them to write down what they observe at each step and
identify various objects and events, they are forced to
reflect and remember what they learned.

• Describe, in a few sentences, the behavior of a
small application program.

In several labs, students were presented with a
compiled, working solution to the programming
assignment. The programs were typically interactive
and graphics based. Students were asked to describe
the functionality of a program before they set out to
write code. This helps students develop the
vocabulary and style they will later need to prepare
functional design documents.

• Describe the purpose of a complex piece of code.

We all learn a lot from working examples. Some of the
code (especially the code that interacts with the
operating system) is too complex to explain in detail
in the introductory classroom. Nevertheless, our
students were able to add a button to a Macintosh
program simply by following an example. They started
with reading existing code that installed several
buttons. At each critical point they were asked to
describe the functionality of that section of code. This
forced them to practice another aspect of the work of
computer scientist often neglected in our classrooms -
reading and understanding existing code as a
preparation for making modifications.

When our honors students were first asked to
summarize the functionality of procedures in a “fatbits”

module used in a “Game of Life” program they were to
modify, their initial attempts were surprisingly poor.
A simple procedure like:

procedure getplace (var f: fatbits;
 var mousespot: point;
 var row, col: integer);

 begin
 with f, bounds, mousespot do
 begin
 row := (v - top) div cellsize;
 col := (h - left) div cellsize;
 end;
 end;

resulted in answers like:

Procedure getplace takes in variables f, mousespot,
row, and col. With f, bounds, mousespot it assigns the
value of (v - top) divided by cellsize to the variable row.

. . .

It was important here to grade and comment on the
students’ work. In time, students learned to abstract
and describe the purpose of code rather than just say the
code in English.

• Answer questions in the lab report form about
your approach to solving a particular problem.

The goal of these exercises was to guide student
through the program development process and to point
out potential pitfalls. The questions were similar in
style to those that one might expect to hear from an
experienced tutor. By requesting written answers,
students were forced to think about the issues and
clearly explain their solution and the reasoning behind
it. When student programmed the animation of a
rolling ball, they were asked about the starting and
ending conditions, and how would the size of the
radius affect the program. When students were asked to
program a movement of a fish through an underwater
cave, they first had to answer questions that helped
them avoid getting trapped in infinite loops and dead
ends.

• Write a paragraph comparing the performance of
two similar programs.

The two programs ‘miniPaint’ and ‘mightyPaint’ were
examples for students to emulate in their assignment.
Students had to play with both versions, compare their
different features, and - hopefully - use their
observations to design their own version of the
program. In the future, we also plan to ask students to
write a short ‘user’s manual’ for their program - how

to select an option, how each option works, how to
exit from the program. The goal of this assignment is
to prepare the student for more detailed user and
product evaluation documents they will write in later
courses and on the job. Part of a student’s response is
shown here:

DIFFERENCES BETWEEN MINIPAINT AND
MIGHTYPAINT

There are four main differences between the two
programs:

1) MightyPaint has a color menu added on the right-
hand side that allows the user to change the foreground
color of the objects drawn. The chosen color is
displayed in a space in the left-hand menu area.

2) MightyPaint lets the user know which task has been
chosen by inverting its icon until the task has been
completed (i.e. the object has been drawn).

3) MightyPaint allows to user to interactively select the
size of the object by pressing the mouse down to select
the first point and dragging the mouse to the second
point where the user then releases the mouse button to
choose the final dimensions of the object. During the
dragging process the program lets . . .

• Analyze the graphic output of a mapping program.

Students wrote a program that displayed in color the
magnitude of values of a function of two variables.
They were asked to describe the results - identify the
minima, the maxima, the saddle points, valleys and
ridges. Often, students write a program and produce
some output without reflecting on the meaning and
correctness of the results. The writing assignment
made them look back and demonstrate an
understanding of the concept they just programmed.

• Explain how your program could be modified to
include additional features.

This kind of document is often included in the
software design process. It assures, that the project
makes allowances for the addition of features not
included in the original design. Students in the first
semester may be asked to do similar planning for the
future. They may not be ready to complete a more
complex project, but by learning to plan for it they
learn valuable software design lesson early in their
studies. By documenting the potential expansion they
not only improve their communication skills, but also
increase their understanding of the project they have
been working on.

• Design and describe an experiment to empirically
evaluate algorithms.

The writing we describe here has been implemented at
several colleges [6, 8]. The goal is to teach students
how to design an experiment to collect meaningful
data. The second part below follows up with analysis
of the results.
Our students learn about many sorting algorithms by
observing and experimenting with an interactive
animation where the array values are represented as a
bar chart and items that are being compared or moved
are highlighted. In addition, the same algorithms
appear in another application that allows students to
perform timing tests on arrays of different sizes, with
random, sorted, or reversed initial data values.
Students are asked to write a design document for
experiments that will evaluate and compare the
performance of several of these algorithms. Some
algorithms take too long and the tests cannot be carried
out as proposed. In other cases, the running times of
some algorithms for small size arrays are so small, that
there is no differentiation between them. Students learn
what is needed to design experiments that produce
useful results.

• Analyze the results of an experiment to empirically
evaluate algorithms.

This is the other side of the previous example.
Students learn that the measure being used must be
able to observe the differences. (If all algorithms take
zero or one tick to run, nothing is learned.) Students
produce a report that describes both the algorithm
design, the results - both in tabular and in graphical
form - and comments on the meaning of the results. In
this case we are looking for a comprehensive
presentation of their findings. Students accept this
challenge and produce impressive reports. Again, this
is a first glimpse on the type of communications
students will be required to produce in their
professional lives.

• Evaluate a class or lab.

This technique has been promoted several times in the
past [7]. Students are asked to answer a series of short
questions about the lab they did, or about the lecture
they just heard. By doing so they are forced to focus
on the main points and reflect on the lessons learned.

• Take class notes and prepare them for
distribution.

Each CS1 student had to take notes for one class
period and prepare them for (electronic) distribution.
We supplied a notes sample set in Microsoft Word.
Students were asked to follow the sample format.
They were expected to include correct explanations,
examples, and working code. We feel that this is an

excellent exercise for the students but it is hard for the
teacher to grade and carry out successfully. While in
most of the exercises described earlier the teacher needs
to provide only a minimal feedback, few students are
able to compile error-free comprehensible notes from a
lecture. For this exercise to benefit the whole class, the
notes need to be produced in a timely fashion and
edited carefully so they are free of bugs and confusing
statements.

WRITING IN THE ADVANCED COURSES

There are many opportunities to practice different types of
writing throughout the upper level computer science
courses. Fekete [3] described a variety of weekly writing
assignments in a Computer Organization course.

Our effort at this level is in its infancy. We started by
collecting reports from all instructors on the use of writing
assignments in their courses. After compiling the
responses we plan to develop, promote, and advertise the
best methods and encourage other faculty to emulate them
in their teaching.

The instructors reported using the following types of
writing assignments in the more advanced courses:

• Design, perform, and analyze a quantitative
experiment .

This was similar to what was already described in the
introductory course section. It is important to realize,
that experimental design and analysis should be a
thread that reappears in several courses throughout the
curriculum.

• Write a report describing, analyzing, or giving a
critique of a feature, an algorithm, some part of a
system.

Again we see that this is a recurring theme. At this
level, the critique can include a deep technical study
related to the course - for example, students were asked
to express their opinion on a cryptosystem proposed
by the government and include supporting technical
arguments. While the good students wrote very good
reports the poor writers’ papers were incomprehensible,
with lots of theorems and lemmas and without any
reasoning.

• Keep logs, progress or activity reports.

The instructors were most enthusiastic about this type
of writing. The assignments are short and a good
instructor can provide very fast feedback. In addition,
both the instructor and the student can see what parts
of the project consumed the largest amount of time. In
the first courses this reinforced the importance of time

spent in design. In real life, many professionals need
to report on their use of time, so again, this is a
preparation for future employment.

• Write a detailed program analysis: line-by-line or
by annotating all functions.

Again, this technique has been already seen in the CS1
and CS2 courses. The goal is to teach students how to
read programs carefully, either so they can explain their
functionality, or in preparation for modification of
existing code.

• Explain the meaning of mathematical ideas in
prose.

Many highly skilled programmers have a very difficult
time grasping the precise meaning of mathematical
theorems that appear in the analysis of algorithms
course. In a statement ‘for every c there exists n such
that...’ they need to see why are we ‘choosing’ c, what
kind of c should we choose to test the ‘limits’ of the
statement, where does the ‘there exists n...’ come
from, etc. Those of us raised on a solid mathematical
diet know how to read this type of statement. But
most of our undergraduates need help in understanding
the real meaning of these theorems. When students are
asked to write prose instead of mathematical formulas,
it is easy to see their misconceptions and address them
in class or in tutoring sessions.

• Write essays from a personal perspective.

This type of writing has been documented before - it
may relate to career choices or to social and ethical
issues in computing.

Almost all instructors who responded to this informal
survey commented that writing component should be a part
of every computer science course and were looking for an
‘official mandate’ for doing it. They all felt it is important
to send a message to students that writing is an integral
part of the profession and needs to be practiced at a number
of different levels.

CONCLUSION

Our goal is to prepare computer science students for their
professional careers. The ability to communicate in writing
is critical to success in the field and should be practiced
throughout the years students spend learning technical
aspects of the field. We hope that writing practice will
become an integral part of every course.

BIBLIOGRAPHY

1. Benezet, “An Experiment in Manchester Schools”,
(details to be included later)

2. D. Deremer, “Improving the Learning Environment in
CS I - Experience with Communication Strategies”,
SIGCSE Bulletin, 3(25), September 1993, ACM Press,
pp. 31-35.

3. A. Fekete, “Enhancing Generic Skills in the Computer
Organization Course”, 26th SIGCSE Technical
Symposium, Nashville, TN, March 1995 (SIGCSE
Bulletin 1(27), 1995), ACM Press, pp. 273-277.

4. Barbara Gross-Davis, Tools for Teaching;, Jossey-
Bass Inc., 1993, San Francisco.

5. A. Leskes and the A.C.E. Committee, “Plan for a
Common Academic Experience”, xxx University
document, September 1994.

6. T. K. Moore, A. G. Rich, and M. R. Wick, “Scientific
Investigation in a Breadth-First Approach to Introductory
Computer Science”, 24th SIGCSE Technical Symposium,
Indianapolis, IN, March 1993 (SIGCSE Bulletin 1(25),
1993), ACM Press, pp. 63-67.

7. B. C. Parker and J. D. McGregor, “A Goal-oriented
Approach to Laboratory Development and
Implementation”, 26th SIGCSE Technical Symposium,
Nashville, TN, March 1995 (SIGCSE Bulletin 1(27),
1995), ACM Press, pp. 92-96.

8. R. Rasala, V. K. Proulx, and H. J. Fell, “From
Animation to Analysis in Introductory Computer Science”,
25th SIGCSE Technical Symposium, Phoenix, AZ, March
1994 (SIGCSE Bulletin 1(26), 1994), ACM Press, pp. 61-
65.

9. J. Robergé and C. Suriano, “Using Laboratories to
Teach Software Engineering Principles in the Introductory
Computer Science Courses”, 25th SIGCSE Technical
Symposium, Phoenix, AZ, March 1994 (SIGCSE Bulletin
1(26), 1994), ACM Press, pp. 106-110.

10. S. Shum, “Using Literate Programming to Teach
Good Programming Practices”, 25th SIGCSE Technical
Symposium, Phoenix, AZ, March 1994 (SIGCSE Bulletin
1(26), 1994), ACM Press, pp. 66-70.

11. H. G. Taylor and K. M. Paine, “An Interdisciplinary
Approach to the Development of Writing Skills in
Computer Science Students”, 24th SIGCSE Technical
Symposium, Indianapolis, IN, March 1993 (SIGCSE
Bulletin 1(25), 1993), ACM Press, pp. 274-278.

