
TRAFFIC LIGHT: A PEDAGOGICAL EXPLORATION

THROUGH A DESIGN SPACE

Viera K. Proulx. Jeff Raab, Richard Rasala

College of Computer Science

Northeastern University

Boston, MA 02115

617-373-2462

vkp@ccs.neu.edu, goon@ccs.neu.edu, rasala@ccs.neu.edu

ABSTRACT

We present the representation of a traffic light as an example of an

object that exhibits a rich behavior set and serves as a case study for a

number of interesting design issues. We focus on the implementation of

the internal state and corresponding control information of the traffic

light, and discuss how various important kinds of behavior can be

added to this extensible design. We present a number of design and

programming exercises to enrich CS1 and CS2 courses.

1. INTRODUCTION

Teaching object oriented programming gives us the opportunity and the obligation

to explore a wider variety of design issues than those discussed in courses which use

imperative languages [2, 3, 5, 6]. To fulfill this obligation, we must provide students

with exercises that are understandable, interesting, and present a large range of design

issues. The design of a traffic light object is one such exercise [1, 4].

A traffic light is an object that is familiar to all students. Any student can provide a

reasonable description of its functionality. With only a small amount of direction,

students can quickly begin modifying such a description into an initial design for a

traffic light class. Questions such as "How are states encoded and where are they

stored?", "What causes transitions between states?", "Who is responsible for the

control of timing?", "Who is in charge of the display", etc. immediately come up and

shape the design. Students can understand a simple light sequence fairly quickly and

enjoy the exercise where they design and implement the entire class. The discussion

that follows presents an opportunity to explore design options, make implementation

choices, and learn about new topics, such as event handling.

We present our initial design of this class together with the description of the first

student project. We then follow with the discussion of additional features, the design

problems they introduce, and our suggested implementation of these features. We

conclude with suggestions for presenting this design problem in a classroom and as a

student project.

2. CONTROLS AND VIEWS: A SIMPLE LIGHT SEQUENCE AT A FOUR WAY

INTERSECTION

The first question that comes to mind when designing the traffic light class is

whether there should be one object with four views, or four separate objects, for a

four-way intersection. It is clear that if there are four objects, they will need to

communicate with each other so they remain synchronized at all times. On the other

hand, having a central control that drives four views seems to be a better design that

lends itself to further extensions. The separation of control from view is an important

design strategy. While each of the actual traffic light displays needs to be able to report

on its state to the external viewers, the control of each state is centralized and

synchronized for all lights at the intersection. So the key design decision is to represent

the entire operation of the light system at one intersection as one class, though its

member data may include an array of four light display objects, one for each direction

at the intersection.

Next we consider how to represent the internal states of the object and how to

program the transitions between those states. The design discussion focuses on

appropriate methods to represent control and change, to maintain state information, to

implement timing, and to encapsulate the entire object.

It is safe to assume that for a simple pattern the light is green for G time units,

yellow for Y time units and red for R time units, with the constraint that R = G + Y.

This constraint states that the time for the red light in one direction equals the sum of

the green and yellow lights in the other direction. This initial design uses a central

clock, which initiates a state change when the appropriate time interval has elapsed.

This design should be rejected immediately for two reasons. The first reason is that

the constraint R = G + Y is appropriate for traffic moving in two of the four

directions, but is ambiguous for traffic moving in the other two directions. A better

constraint would be the pair of formulas R1 = G2 + Y2 and R2 = G1 + Y1, which

correctly controls traffic in all directions. Second, changing the timing would

necessitate a revision of the class itself. Although values for G and Y could be supplied

as parameters, the resulting code would be more difficult for students to understand,

and would still be limited to one type of pattern. A discussion of desired extensibility

of the object leads us to use a state transition approach.

Once the discussion has proceeded this far, students can be asked to design and

implement a simple traffic light class for a four-way intersection with timing given by

values for G1, G2, Y1, and Y2. The design may include a graphical display of the

changing lights.

3. A REAL TRAFFIC LIGHT: REPRESENTING STATES AND TRANSITIONS

 We now look at timing and sequence variations, and present suggestions for

design and implementation of the control center and its state information, and for

programming transitions between states.

3.1 Representing the states and transitions

 A discussion of real traffic light functionality makes it clear that the easiest and

most versatile method for representing the state of the system is to allow a distinct

state for every combination of lights, for each display. If the four displays in the four

directions have three lights each, then 12 bits can encode the state of the entire system,

at any discrete moment. More bits would be needed for a light with more than four

displays, or for displays with more than three lights, such as a left turn signal. To

encode the state transitions, each state can also include the interval of time for which it

should persist. A circular sequence of states can be implemented either as a linked list,

or a dynamic array. We prefer the second method as it has less overhead and is equally

efficient in modern programming languages such as Java and C++.

 The representation of a simple pattern would require a minimal amount of space,

and would be easy for a student to understand. An example pattern follows, for a

traffic light with four displays with three lights per display:

 North East South West Time

 i RYG RYG RYG RYG

 0 100 001 100 001 50

 1 100 010 100 010 5

 2 001 100 001 100 50

 3 010 100 010 100 5

 This corresponds directly with the simple state transition diagram below:

3.2 Adding “delayed green” functionality and other fixed-timing variations

 The flexible design of the state representation enables us to add complex timing

functionality, such as “delayed green” timing, with no further programming. A delayed

green is simply a state where a single display shows a green light, and all other

displays show red. Since the state representation maintains an individual light

combination for each display, adding this type of functionality requires only the

addition of a new state to an existing pattern. For example, state 0 above, which

persists for 50 units of time, could be split into two states in order to implement a

delayed green. The first of the two states would have only the East display showing a

green light, and would have a persistence of some n < 50. The second of the two states

would have the same display as 0 above, but would have a persistence of 50 - n units

of time.

 In the same way as for delayed green, any type of functionality that uses

complex timing can be implemented by adding new states to a sequence. Examples of

other complex timing include situations where the duration of the green light in one

direction is different than that in the perpendicular direction, where there is a left turn

signal, and where a pedestrian walk sign is shown once per cycle.

3.3 Adding a pedestrian “walk” button

 In many cases it is desirable to provide time for pedestrians to safely cross an

intersection by showing a red light on all displays. It is simple to add such a state to a

given sequence, but such an approach would be inefficient; it cannot be guaranteed that

there will be pedestrians waiting to cross the intersection every time the light changed

into that state. The solution is to allow conditional state transitions, such that a

transition could lead to two different states depending on the evaluation of a

conditional expression. For this example, a state in the sequence would change to an

“all red” walk state only if the walk button was pressed, and otherwise would continue

to the next normal state in the sequence.

R

50

R

G G

R

5

R

Y Y

G

50

G

R R

Y

5

Y

R R

 Implementing this functionality may seem difficult, but it is actually quite

simple. By including a boolean value button in the state representation, we can

designate whether a given state is part of the normal pattern or is a conditional state to

be entered only if the button has been pressed. Additional programming is required in

this case, as each state change must test to see if the following state in the pattern

should be entered or skipped. Because of the extensible design of the state

representation, however, only a small amount of new code is necessary.

3.4 Sensor driven traffic lights

 Some traffic lights use external sensor information to force state changes that are

appropriate to the traffic currently moving through the intersection. Although these

sensors are similar to pedestrian walk buttons, there are important differences that

affect the overall design. First, there are often multiple different sensors for a given

intersection, while there is usually just a single walk button. Second, the sensor

information is not used to choose between two possible transitions, rather it is used to

interrupt a state and cause a transition before the usual time interval has elapsed.

Although such functionality is more difficult to implement than the pedestrian walk

button, its implementation is still simple enough to provide pedagogical benefits

without confusing students.

 To implement a sensor driven traffic light, the state representation must be

augmented to maintain not only a normal time interval, but also a minimum persistence

interval, as well as a list of sensors to listen to. With the addition of this new

information, a state can then be programmed to persist at least until the minimum

interval has elapsed, and at most until the normal interval has elapsed, with the caveat

that a state change can be initiated by any of the registered sensors in the mean time.

This implementation makes use of event handling in a straightforward manner, and

introduces interrupts as a fundamental and important concept.

3.5 Using multiple sequences

 Many real world traffic lights do not simply follow a single sequence ad

infinitum. Such lights follow different sequences based on local data such as time of

day or traffic density, or external data such as holidays. Under the object oriented

paradigm, implementation of this kind of functionality is extremely simple. Assuming

that a sequence is an encapsulation of an ordering of discrete states, a higher level

object could easily be created to encapsulate an ordering of discrete sequences,

representing a state transition cycle of sequences. These intersequence transitions

could be initiated in the same various ways as intrasequence transitions, e.g. through

expiration of time intervals, by pushing external buttons, or by listening to sensor data.

In order to avoid awkward, possibly dangerous, intersequence transitions, a constraint

could be added to ensure that such transitions may only occur after a sequence has

completed its internal state transition cycle.

 This idea could be extended to any desired level. In order to accommodate

holiday traffic patterns, or seasonal differences in roadway conditions, further levels

could be fashioned with very little programming effort. A traffic light could maintain a

complex, multiple sequence schedule using basically the same tools needed to maintain

a simple two minute light sequence.

3.6 Adding emergency capabilities

 Regardless of the level of encapsulation used to determine the overall schedule for

a traffic light, it may be necessary to provide the traffic light with a state that can be

triggered during an emergency situation, such as when a fire station is responding to an

alarm. This functionality could be added at the sequence level, in the same way as the

passenger walk button, by adding states that are skipped by default. Such a solution

would be inefficient, as many such states would have to be added in order to assure

that the emergency state could be entered at any point, in any sequence, in any time of

day, etc.. It is a more intuitive design to provide the emergency state as an alternative

to the entire schedule, which can be entered or left by the push of a button.

 The implementation of an emergency state would be similar to the

implementation of sensor lights, in that it would be interrupt driven, but the emergency

state implementation is more difficult in other respects. In order to eliminate the

possibility of dangerous state transitions between sequences, a constraint was added

which allowed sequence transitions to occur only at the end of a sequence's cycle; this

constraint may cause the transition into the emergency state to take unacceptably long.

It is not safe, however, to immediately enter the emergency state.

 By adding yet another boolean value emergency to the lowest level state

representation, we can mark states as safe or unsafe to change to the emergency state.

Typically, states where one or more displays show green would be marked unsafe, and

states where all displays show only yellow or red would be marked safe. In the case

of an emergency, the light would immediately move to the next safe state in the current

pattern. When the time interval for the safe state has elapsed, the light would change

to the emergency state, which would persist until the emergency button was released.

Upon leaving the emergency state, it would be desirable to have the light change to the

state that follows the safe state that preceded the emergency. By treating the

emergency state as a subroutine, an obvious implementation possibility becomes clear:

the current state at the time of the emergency could be stored on a stack, and entered

upon return from the emergency call.

 An alternative way of assuring safe transition into the emergency state is to

encode several emergency transition patterns and label each state with an index that

identifies its appropriate emergency transition sequence. Upon receiving the

emergency signal, the light would follow the appropriate transition sequence, and then

enter the emergency state. The transition back to the normal sequence may require its

own transition sequence as well.

4. PEDAGOGICAL CONSIDERATIONS

4.1 Problems and Projects for Students

 There are several ways that this problem can be used in a course. The design and

implementation of the basic light class with fixed timing and display is a nice exercise.

The class discussion provides an opportunity to practice the design of state transition

diagrams, and introduces the tradeoffs between the different methods for representing

the states and implementing the transitions in a program. The introduction of the

pedestrian push button gives the context for discussing the handling of events and

external interrupts. The overall discussion of the design explains the importance of

making the initial design extensible and of properly encapsulating the components of

the system. When discussing how to implement the displays and the interactions of

the traffic light with the traffic on the road, the idea of separating the control from the

view becomes prominent. Another interesting issue is the control of timing. A simple

simulation would be controlled by a centralized timer that updates the state of the

system (both the light and the relevant traffic) once at every discrete time interval.

However, for a more realistic simulation one needs to give the traffic light its own way

of checking the system clock and updating itself as an independent thread with the

highest priority. The traffic in each direction can then be implemented as four separate

threads, running with somewhat lower priority than the light thread.

4.2 Our Experiences

 We used the assignment to design a simple traffic light in out Object Oriented

Design course. To focus student's attention on the design of the controls and

interactions with the external views, we provided the code for a graphical display of

the lights. The assignment came fairly early in the course, when students had very little

experience with designing classes and understanding the proper encapsulations. The

exercise provided an excellent example for explaining proper class design and

encapsulation. The better students added extra features for additional credit and greatly

enjoyed watching the actual simulation of traffic. Students clearly enjoyed the project

and produced many interesting questions and design variations.

5. ACKNOWLEDGEMENTS

 Partial support for this work has been provided by the National Science Foundation

Leadership in Laboratory Development, award #DUE-9659552 and by the Microsoft

Corporation.

6. REFERENCES

[1] Berman, A. M., Data Structures via C++: Objects by Evolution, Oxford University

Press, New York, 1997, pp. 275-277.

[2] Holland, S., Griffith, R., Woodman, M., Avoiding Object Misconceptions, ACM

SIGCSE Bulletin 29 (1), 131-134, 1997.

[3] Parlante, N., Teaching With Object-Oriented Libraries, ACM SIGCSE Bulletin 29

(1), 140-144, 1997.

[4] Proulx, V. K., Traffic Simulation: A Case Study for Teaching Object Oriented

Design, ACM SIGCSE Bulletin 30 (1), 48-52, 1998.

[5] Rasala, R.. Function Objects, Function Templates, and Passage by Behavior in

C++. ACM SIGCSE Bulletin 29 (1), 35-38, 1997.

[6] Schoenfeld, D. A., Object-oriented Design and Programming: An Eiffel, C++ and

Java Course for C Programmers, ACM SIGCSE Bulletin 29 (1), 135-139, 1997.

