
Traffic Simulation: A Case Study for Teaching
Object Oriented Design

Viera K. Proulx
Northeastern University

College of Computer Science
Boston, MA 02115, USA

vkp@ccs.neu.edu

0. Abstract

In teaching object oriented design, it is important for
students to work on projects that use a variety of design
patterns, interaction between objects, and provide the
opportunity to explore design options in a realistic
setting. Originally, object oriented languages have been
designed for use in building simulations. We use a
familiar simulation of a traffic through an intersection,
controlled by a traffic light as a framework for teaching
various aspects of object oriented design. We present this
project and show how it illustrates a variety of object
oriented design problems.

1. Introduction

When Bjarne Stroustrup first embarked on designing C++,
he wanted to build a better tool for programming
simulations [2]. His experience with programming in
Simula showed him how effective object oriented design
is in creating such complex programs. It may be of
interest to recall some of his comments:

"The class concept allowed me to map my application
concepts directly into the language constructs in a direct
way that made my code more readable than I had seen in
any other language" p. 19.

"I ... was very pleasantly surprised by the way the
mechanisms of the Simula language became
increasingly helpful as the size of the program increased
... the total program acted more like a collection of very
small programs than a single large program and was
therefore easier to write, comprehend, and debug." p. 20.

 __
Partial support for this work has been provided by the
National Science Foundation Leadership in Laboratory
Development , award #DUE- 9650552

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’98. Atlanta, GA, USA.
Copyright 1998 ACM 0-89791-994-7/98/2…$5.00.

If we want our students to become similarly excited about
object oriented programming, they need to see examples
that illustrate the advantages mentioned by Stroustrup -
easier mapping of application concepts into language
construct, more readable code, a large program acting like
a collection of very small programs.

It is only natural to look at simulations for a source of
project ideas. Simulation of traffic on a roadway with an
intersection controlled by a traffic light is an excellent
choice. Students have a good understanding of the
problem domain, can design a limited scope subproblem
(e.g., one lane of traffic) as well as extensions (turning
traffic, several intersections) which motivates the best
students to expand the project. In addition, the state of the
system as the simulation proceeds can be displayed easily
in a very familiar way. The visual display helps students
understand the problems and see their errors. We have
been using simple graphics in our introductory courses for
a number of years and to create an animation of the
system as the traffic moves was a fairly straightforward
task.

The programming of the simulation itself is more
complex. There are several different objects that both
operate independently and interact with each other directly
or indirectly. There is the road, the light, and all the cars -
all changing their state as the simulation proceeds.
Additionally, this simulation allows students to design a
whole suite of experiments studying the traffic behavior
under different constraints - a different focus altogether
from the design of the simulation program. To allow for
a suite of such experiments, the user interface design needs
to be considered.

In the following sections we will define the problem and
identify the necessary objects and their interactions. We
will then present our design of this simulation and explain
its limitations. We then examine the design lessons to be
learned from this project. In the final section we suggest
several ways of incorporating this project into coursework
at different levels of difficulty.

2. Traffic Simulation - The Problem

The goal of a traffic simulation is to collect data about the
traffic flow. In our project we start with modeling one

orthogonal intersection controlled by a traffic light. Each
roadway leading to and from the intersection will have a
fixed length (providing space for a fixed number of cars).
The simulation is driven by a timer.

Cars arrive onto the four lanes of traffic leading to the
intersection every timer unit with a probability 1:n (n
selected by user - suggested value 6). All cars travel at a
constant speed of one half car length per timer unit, unless
the road ahead is blocked (by another car or by the color of
the traffic light). Cars exit the simulation when the front
of the car 'falls off the road'.

The duration of the light cycles for the traffic light is
selected by the user. Due to the geometry of our design a
car needs six timer units to clear the intersection. This
determines the duration of yellow light (see Figures 1 and
2).

Figure 1. The roadway with the location of places
controlled by the traffic light

At this point we do not define the statistics we will
collect about the individual cars or about the overall
simulation performance, other than counting the number
of cars that traversed the entire road in each direction.

During the development process the user input is limited
to selecting the traffic light timing, the probability of a
car arriving during any given timer unit, and the length of
the simulation run. Later, a more complex user interface
will allow the user to select the statistics that should be
collected and displayed.

We now list the objects involved in the simulation and
the actions that these objects perform.

Figure 2. The traffic simulation

Objects:
• road (one lane of traffic - a static structure)
• car (moving in a given direction, currently in a

given position)
• collection of cars (every object in the collection

needs to be updated during each timer loop)
• traffic light

Actions:
• a mechanism is needed to record whether a given

place on the road is free to enter or is blocked
• a car needs to be able to check whether it can

move forward
• a car needs to be able to move
• a car needs to detect when it arrives at the end of

the road
• the traffic light needs to set its timing
• the traffic light needs to be able to update its

status
• the traffic light needs to signal that a particular

place on the road is blocked due to its current
color

• car collection needs to update all existing cars
• car collection needs to remove exiting cars
• car collection needs to add newly arrived cars

We now describe the details of our design and the
reasoning behind each design choice. We then discuss
some of the design alternatives as well as the limitations
our choices impose on us.

2. Traffic Simulation - Specification o f
Classes and Their Interactions

Our simulation is controlled by a discrete timer. The
granularity of the timer units determines the granularity of
the road surface and the atomic car movement increments.
Each car occupies two square units of the road surface and
can move one unit forward during one timer cycle. These
square units (places) form the basis of our simulation.
We start by describing the functionality of each object.
The design of the display is quite straightforward and we
will mention it only briefly.

Place Class
This class is at the heart of the entire program. Each
place represents one patch of asphalt on the road. It
contains four pointers to other places adjacent to this one.
The pointers contain valid links only if travel in that
direction is permitted. So, all places in the northbound
lane (except for the last one) will have links to their
neighbors north of them, but no other links. When we
start building intersections, the places where two
directions of travel cross will have links to both
neighbors. A place can be blocked if it is occupied by a
car or if the light ahead is not green.

To display a place (e.g., after a car moved away) we also
need to record its physical location in the display.
Because the whole display can be treated as a grid
specifying the row and column information is sufficient.

Car Class
Each car is represented by an object in the Car class. To
distinguish the cars from each other, each is given a color
at random (from a list of about 12 colors). The car
dimensions are such that each car fits inside two road
places. The car object will have two links to the two
places it occupies on the road. The car object will also
record the direction in which it is facing. This
information provides the information needed to display a
car or to repaint the background as the car moves.

Additional member data may be added - either to indicate
the intent to turn or to collect statistics during the travel.

Member functions will allow us to check if a car can
move, to move the car, to check if it is at the end of the
road, and, of course, to erase and display the car.

Road Class
This is an interesting class. Each lane of traffic is
represented by one object in this class. Each Road object
is a linked list of Place objects. The Road object knows
its direction, can return a pointer to a specified place on
the road, especially to the first place where a car will enter
the road.

Traffic Light Class
The TrafficLight class is responsible for timing the light
changes and signaling the current color. The signaling of
the color is implemented by blocking and clearing the four
places in the roads that are just before the entrance to the
intersection. This behavior emulates gates at toll booths -

a rather drastic method for enforcing the traffic rules.
However, it greatly simplifies the object interaction.
To initialize the timing of the traffic light, we need to
know the duration of the three light cycles. For the light
to function properly, the duration of the red light should
be the sum of the green and yellow light in the opposite
direction. Knowing that the yellow light has a fixed
duration of six cycles the user only needs to specify the
duration of green light in two directions (north/south vs.
east/west).

The constructor for this class should ask the user to enter
the timer settings. The Update function should advance
the traffic light timer, display the new state, and block or
clear appropriate road places.

CarQueue Class
There is one CarQueue object for each direction of travel.
It is a simple queue of car objects. New cars enter at the
tail and cars that reach the end are removed from the head.
In general, this should be an unstructured collection and
we should even be able to update all cars in parallel.
However, a queue works well for traffic without turns.

3. Traffic Simulation - The Design
Decisions and The Lesson They Teach

We now discuss in detail the various design decisions that
needed to be made to make the whole project work. We
point out the limitations and suggest alternatives when
possible. We also highlight the new concepts students
encounter when studying this design.

The decision that each Place object has four links makes
the car movement in orthogonal directions easy to
implement. It is also possible to make 90° turns in either
direction. However, a gradual turn in the road or traffic
with a passing lane cannot be easily modeled using this
class.

The Place object contains a function
FreeToMove(direction) that indicates whether there is
a link to another Place object in that direction and whether
this object is currently marked as free. It also has a
member function Next(direction) that returns a pointer
to the next Place object. It is used by the car's Move
function.

The Car class allow us to make every car into an
independent object. Each car should be able to move,
erase, and display itself. To do this it needs access to the
two Place objects that represent its position. These
cannot be member data of the Car object - we need to use
only reference to the Place objects that are part of the
Road. As the car moves, it unblocks the Place in the rear
and blocks the Place ahead. Car can also collect statistics
about itself - the total time on the road, the waiting time,
the distance traveled, etc. We see that a car designed this
way has no knowledge of the world around it other than

its position on the road, the direction of travel, and
whether the place ahead is free.
The Road class is a classic example of a static linked
structure that is traversed or visited by other objects, but
its structure does not change throughout the duration of
the simulation.

The Road class and the Place class need to work together
here. When building the Road object we need to modify
the link member data of Place objects as new ones are
added to the road. Once the road is built, these links never
change - they are only traversed. The proper design here
forces us to do the following:

• there should be no member function in the Place
class that changes these links

• the constructor in the Place class should set these
links to null

• the Place class should be a friend to Road class,
so that the road class has direct access to the link
member data

• Road class generates the Place objects and
initializes links between them to represent
roadways.

• Places that are at the intersection of two
roadways are created by the first Road object and
the intersecting Road object has to reference the
already existing Place object.

This design assures that once the road is built, the links
will remain intact throughout the simulation - an
important feature (see Figure 3). Such static data
structures are important in some system programs and
when writing a shared code.

Figure 3. A cartoon

An additional problem arises when two roads cross. Now
one Place object that is at the point of intersection will
belong to two Road objects. Because in C++ we need to
do our own garbage collection, writing a destructor for
this linked list requires the use of a reference count. We

can only delete Place objects that are not parts of any
other Road object.

The TrafficLight object has several interesting features.
First, we need to represent the current status of the light
and define the transitions between the possible states. Our
traffic light design requires that the signal in the two
opposite directions (north/south or east/west) are the same
at all times. There are at least two methods for recording
the current state and computing the new state on each
timer update. The first method requires that we store the
timing data supplied by the user and every time the light
color changes we start a countdown with the appropriate
value. The design works, but the implementation is quite
messy. Our implementation recognizes the fact that the
light cycle repeats after a finite (not very large) number of
steps. We represent each possible state of the signals by a
pair of letters. GR indicates that the traffic light in the
north/south direction if green and that is it red in the
east/west direction. The constructor for the TrafficLight
object computes the sequence of states during the entire
cycle and stores them in an array. It also records the
length of the cycle. The current state of the traffic light is
then encapsulated in one array index. The update function
needs only to increment this array index modulo the cycle
length. The key design issue here is computing the state
each time vs. storing the state transition diagram data
directly. For the purposes of readability, maintenance, and
even time efficiency, the second design is clearly a better
choice. The additional space requirement for recording the
state array is not a problem in this case. Either one of
these methods can be easily extended to accommodate
light cycles in which the two opposite directions are not
synchronized.

The second problem that needs to be addressed is the
interaction between the light signal and the cars traveling
on the road. To simplify things, the traffic light controls
the four Place objects at which the cars enter the
intersection. It can block them when the light turns
yellow and free then when the light turns green. We may
think there is a gate there, like at a toll booth. While this
makes it impossible to ignore the traffic rules, it
simplifies the object interactions. The discussions of the
alternative design options for this interaction will
undoubtedly expose a number of interesting problems. A
Place object can have a marker indicating we are at a light,
maybe even a pointer to the TrafficLight object that the
car can then query about its state. Things get more
complicated and the design must respect the autonomous
nature of each object.

Finally, we examine the alternatives for representing the
collection of all cars on the road. The simplest design
uses one queue for each traffic lane. Cars enter the queue,
traverse the lane, reach the end and exit. The Road object
supplies the pointer to the first Place object on the road.
When the car reaches the end, the car's first Place pointer
becomes null. CarQueue update function performs three
tasks:

• moves every car that can move
• removes a car from the front of the queue if it has

reached the end of the road
• adds a new car to the queue if "the random

number generator says so" and there is a space for
this car on the road.

There are no public functions to either insert into the
queue or to remove from it - both of these are called
internally by the update function.

Another issue is the creation and destruction of Car
objects. We elected to use array based implementation of
a queue as a circular buffer with Car object as array
elements. Instead of creating new Car objects, we use a
Reset function when a new car is added to the queue.

If we allow cars to turn, the Car collection needs to be
implemented differently. A pointer based linked list is one
option. Another one is to allocate memory (array based)
to the maximum number of Car objects we may have and
mark those objects currently on the road as active. On
each update, only the active Cars try to move. New cars
are given one of the inactive Car object locations. When
a Car object reaches the end of the road, it marks itself
inactive.

The display functions can be equipped with a switch that
disables the animation for large simulations or if the user
wants to conduct a whole series of measurements.
Additionally, to display the cars and traffic light in four
directions we built a simple vector based toolkit.

4. Traffic Simulation - Additional Features

The design of the traffic simulation described above can be
extended in two ways. It is a straightforward extension to
add additional roads and intersections, as long as all roads
permit travel only in the orthogonal directions. It is only
a slightly more difficult to allow cars to turn. A car that
plans to turn would need to turn on its turning signal.
Each time a car moves, it first tries to move in the
direction of the turn, if that is impossible, it moves
forward (unless blocked). The design of our roads
guarantees that the first step of a turn can always be taken,
so we will not miss the turning point because another car
may be there. As we mentioned earlier, we need to
redesign the way we keep track of all the cars on all roads.

We can add a number of data collecting functions to the
car object and extend the simulation to collect this data.
We can then design a series of experiments changing the
distribution of car arrivals, the timing of the lights, the
duration of the simulation. To support such
experimentation, we may need to design a user interface
and a mechanism for collecting data.

5. Suggestions For Classroom Use

 This project can be used in several ways. For students in
CS2 we supplied all of the display functions, the
complete design document and the definition of all classes.
We also supplied a simple driver. Their job was to
implement each class. This was a fairly difficult task, but
a couple of students got the simulation working. It is
possible to downscale the project for introductory courses
to model the traffic in only one direction. Another
alternative would be to make it a team project with
different people responsible for different classes. For a
class in object oriented design this can be used as a case
study illustrating the numerous design decisions we had to
make and especially the mechanisms used to communicate
between objects while preserving their autonomy. It
could also be either a team project or a capstone project.
Depending on the time available and the student's
capabilities, we may supply smaller or larger portions of
the complete design.

There are also lessons for the instructor arising from this
project. It is important to work out a project first before
asking students to work on it. A popular textbook (not
quoted for obvious reasons) suggests this type of
simulation with a graphic display as a simple end of
chapter exercise - with no hint about the complex design
necessary for a functional implementation. The design
choices should be discussed with students and used as
examples of the need for different language constructs.

6. Conclusion and Acknowledgments

We started by quoting Bjarne Stroustrup. Looking back,
our experience with this design is similar - the code is
easier to understand and it feels like a collection of small
programs. Extending the functionality affects only a
small number of objects in a predictable manner.
Students need to see examples of code where good design
matters and brings rewards.

In conclusion, I would like to acknowledge the
contribution to this project by Richard Rasala - through
numerous discussions we had about design issues over the
past several years.

References

1. Gamma, R., Helm, R., Johnson, R., and Vlissides,
J., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995.

2. Proulx, V. K., Rasala, R., and Fell, H., Foundations
of Computer Science: What Are They and How Do
We Teach Them?, SIGCSE Bulletin, June 1996, Vol
28 Special Issue, 42-48.

3. Stroustrup, B., The Design and Evolution of C++,
Addison Wesley, 1994.

