
Test-Driven Design for Introductory OO Programming

Viera K. Proulx
College of Computer Science

Northeastern University
Boston, MA

vkp@ccs.neu.edu

ABSTRACT
Test-Driven Design (TDD) has been shown to increase the
productivity of programming teams and improve the quality
of the code they produce. However, most of the introductory
curricula provide no introduction to test design, no support
for defining the tests, and do not insist on a comprehensive
test coverage that is the driving force of the TDD.

This paper presents a curriculum, pedagogy, and the soft-
ware support for introductory object-oriented program de-
sign that uses the TDD consistently from the very begin-
ning. The testing software does not increase the program
complexity and is designed to work with the simplest pro-
grams. It has been used by hundreds of students at several
colleges and is freely available on the web.

Our experiences show that besides improving the quality
of code students produce, TDD combined with the novice-
appropriate test libraries reinforces students’ understanding
of the object oriented program design.

Categories and Subject Descriptors
K.3.2[Computer and Information Science Education];
D.1.5 [Programming Techniques]: Object-oriented Program-
ming]; D3.3 [Programming Languages]: Language Con-
structs and Features—classes and objects

General Terms
Design, Reliability, Languages

Keywords
CS1/2, Design, Pedagogy, Programming Education, Test
Driven Design

1. INTRODUCTION

Test Driven Design: Industry vs Teaching
Nearly everyone agrees that program design includes the
testing of the program to verify that it performs (to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

extend that it can be tested) as expected. The professional
programming community has realized that designing tests
after the program has been written often leads to tailoring
the tests to the code, rather than to the original problem
statement. The Test Driven Design (TDD) program devel-
opment technique has evolved to address this problem. It
has been the key process used by the Extreme Programming
teams and has been shown to improve the quality of the code
teams produce. Jeff Langr [12] comments on the improve-
ments in the code organization as the result of enforcing
the test first design (TfD) strategy: ”One of the practices
in XP is test-first design (TfD). Adopting TfD means that
you write unit-level test for every piece of functionality that
could possibly break. It also means that these tests are writ-
ten prior to the code. ... The first (hopefully obvious) effect
of TfD, is that the code ends up being testable... Third, the
granularity of code chunks written by a developer via TfD is
much smaller. This occurs because the easiest way to write
a unit test is to concentrate on a small piece of functional-
ity. By definition, the number of unit tests thus increases -
having smaller chunks, each with its own unit test, implies
more overall code chunks and thus more overall unit tests.”

One would think educators would jump at the opportunity
to improve students’ programming skills by incorporating
TDD (or TfD) into the introductory curriculum. However,
the problem in doing so lies in the tools one has available
for defining the test cases and evaluating the test results.
Some authors and curriculum designers resort to JUnit, a
professional level testing framework. But, this introduces an
extra burden on the novice programmer. The student not
only has to learn how to use this new framework, but also
has to understand program design concepts that are much
more advanced than the novice’s programming expertise.

A survey of over 20 current introductory textbooks that
use Java programming language found only two in which
testing is a required activity from the beginning (see Ap-
pendix A). All other texts in this survey relegate testing to
a brief narrative of no more than a few pages with no in-
structions for the student on how to design and use tests.
The two texts that use testing throughout do not provide
examples of tests, nor do they provide a support for running
the tests — or for reporting the test results 1.

A survey of recent papers on computer science education
shows a number of attempts to include testing in introduc-
tory object-oriented programming instruction [4, 5, 8, 9, 10,
11, 13, 15, 16, 17, 18]. Most of them rely on JUnit, a testing

1BlueJ software supports unit testing in the JUnit style, but
is not discussed in the textbook [1].

environment designed for a professional programmer. While
in many cases students do write more test cases and fol-
low the more stringent design protocol, the writers do not
see students acquiring a habit of writing tests. All of them
comment on the added complexity of the overall code —
typically there is one test class for each class a student de-
fines, making the final product even more complex. Some
attempts in simplifying this process for students follow the
same path — the BlueJ Unit Test support increases the
difficulty, as students clutter the screen with yet more test
classes.

Our experience has led us to believe that associating test
cases with specific classes (as is often done when using JU-
nit) detracts from good object-oriented design. For example,
the tests for methods defined for classes that recursively im-
plement the binary search tree data type do not belong to
the Leaf class or to the Node class, but should in one place
cover both variants of the BinarySearchTree union type. 2

Consequently, our students define all examples of data
and the test cases that may use these instances in a sepa-
rate Examples class, that represents the client for the stu-
dent’s code. Only two papers from the ones listed above [13,
16] defined the test cases in a special Test class that emu-
lated the client to the program — our chosen approach. But
even in those cases the authors failed to provide a novice-
appropriate test harness for defining the tests, evaluating the
tests, and reporting the results. The approach that comes
the closest to ours is presented by Thornton et.al. in [17].
However the focus of their tool is the testing of GUI pro-
grams, not programs from the general domain.

Test Design: A Pedagogical Imperative
We argue that the students need to develop their testing
skills hand-in-hand with their programming skills, supported
at each stage by a test harness that allows them to express
their tests at their current level of mastery of the program-
ming language. This approach not only teaches students
to practice good programming style, but it also reinforces
their understanding of the programming concepts they are
learning.

Let us illustrate this on an example. Suppose the first
class the student sees is the class Item that contains two
fields, String name and int price, and the first method
we define is the method Item reduce(int d) that produces
a new item with the price reduced by the given amount.
Student’s test of this method should focus on the expected
result: a new Item with the same name where price equals

2Robert V. Binder [3] writes:
The work of testing must be orchestrated to complement
the technical constraints and opportunities of the object-
oriented paradigm and the structure of the system under
test.
1. Although a class is the smallest natural unit for testing,
class clusters are the practical unit for testing. Testing a
class in total isolation is typically impractical. Methods are
meaningless apart from their class, but must be used individ-
ually to exercise class responsibilities. Method testing must
consider the class as a whole. As a result, the test design
must be method-specific but based on cluster-scope respon-
sibilities. ... At this scope, testing must combine aspects of
unit and integration testing.
6. Class testing must be closely tied to class programming.
Object-oriented unit testing proceeds in a shorter cycle than
the corresponding activities in procedural development. The
development process must facilitate short code/test cycles.
...

the original price minus d. (We ignore in this example the
discount value which would lead to a negative price.) The
appropriate test would be:

Item bread = new Item("Bread", 200); // price in cents
checkExpect(bread.reduce(20), new Item("Bread", 180));

This is the first object and the first method invocation the
student sees. The syntax overload and the complexity of
getting even the simplest program to run is great. This is
no time to learn the intricacies of equality, overriding the
equals method, using yet another environment for defining
tests — especially if overriding the equals method requires
that the student understands the distinction between the
two kinds of equality. (And, of course, the student does
not know anything about overriding methods.) Instead, the
checkExpect test case compares two object by their values,
which is what the student would expect.

Furthermore, instead of being a burden, writing the test
case in this simple form teaches the student how to define
an instance of the class Bread and how to invoke the method
reduce in this class, as the code would appear in the client
class.

As students master more advanced concepts the discussion
of the equality comparison can be presented in the context of
well understood concepts. Students can then start gradually
defining their own equality tests, so that by the end of the
semester they can use the professional environment of JUnit
with confidence, having developed a deep understanding of
the problems they may encounter.

2. TEST DESIGN FOR NOVICES

Test design in the functional style
Our curriculum starts by enforcing the use of Value Ob-
jects, i.e. making sure that every method produces a new
instance with the values modified as desired. Beck in Effec-
tive Java [2] writes: ”We can use objects as values... One
of the constraints on Value Objects is that the values of the
instance variables of the object never change once they have
been set in the constructor. ... When you have Value Ob-
jects, you needn’t worry about aliasing. ... One implication
of Value Objects is that all operations must return a new
object ... Another implication is that Value Objects should
implement equals, because ...”. The benefit of using Value
Objects approach is that the test for every method only needs
to compare the value of the object it produced against the
value of the expected object. 3

To enforce the use of unit tests with every method a stu-
dent designs, students are taught to design methods by fol-
lowing the Design Recipe that consists of six steps:

Step 1: Problem analysis and data definition; Step 2:

Purpose statement and the method header; Step 3: Exam-
ples with expected outcomes; Step 4: Inventory of available
data elements and methods that can be invoked on them;
Step 5: Design of the method body; Step 6: Converting
examples into test cases and running the tests.

3The Java equals method does not by default compare ob-
jects by the values they represent (extensional equality).
The programmer must override the equals method to imple-
ment the desired measure of equality. Many other languages
(especially functional languages such as Scheme) provide two
different equality comparison functions.

The grading of the problems reinforces the emphasis on
the test design by assigning equal weight to the design of
the method, the design of its header and purpose (contract
and documentation), and the design of the tests.

The programs students write consist of interface defini-
tions, class definitions, and a class Examples that contains
sample data definitions for each class defined earlier as well
as test cases for every method defined in any of the classes
defined earlier. At the beginning of the semester students
use a special programming environment designed for a novice
programmer (ProfessorJ within the DrScheme [6, 7, 14]).
The test cases are grouped into boolean expressions that
have the following format:

Item bd = new Item("Bread", 200);
boolean testReduce =
(check bd.reduce(20) expect new Item("Bread", 180)) &&
(check bd.reduce(40) expect new Item("Bread", 160));

Every check - expect expression produces a boolean value,
and a test report is generated for all boolean expressions
with identifiers that start with test. The code within the
Examples class uses the same syntax and behaves the same
way as all other class definitions - with the single exception
that properly formulated test cases are evaluated when the
program runs. The test report not only lists the tests that
failed, but also displays both the actual and the expected
values in a humanly-readable form (as one would get from a
well-formed toString method), and provides for each failed
test a link to the test source code.

Transition to the real world
We have used this ideal setting for a couple of years. Stu-
dents learned early to practice test-driven design and the
supporting testing library just reinforced the key course con-
cepts — with no syntactic or logistic overhead. However,
after a couple of weeks using the learning environment, our
course moves on to standard Java (using the Eclipse IDE).
Without the support of a testing library the task of design-
ing and evaluating tests became a nightmare.

During the first year we taught this curriculum we re-
quired that students override the toString method for every
class and compare visually the actual and the expected val-
ues. Besides the extra overhead, this technique did not scale
to large data sets or programs with a number of methods to
test. Comparing visually two binary search trees with six
nodes, seven leaves, and where the data in each node con-
sists of three fields is an impossible task, especially if one
has to evaluate several such tests.

In the following years we required that students implement
their own equality comparison by defining the interface

interface ISame<T>{
boolean same(T that); }

and requiring that every class students design implements
this interface. The test cases then used this method to com-
pare the two instances. Here the task of implementing the
same method for more complex class hierarchies, such as
binary search trees, exceeded the difficulty of the original
programming assignment and forced us to introduce pre-
maturely the concepts that the students were not ready to
handle.

To automate the test evaluation and reporting we de-
signed a testing library that automatically evaluated all test

cases and reported the results (using the user-defined same

methods). But students’ frustration with designing the same
methods remained and the test coverage of their programs
after the transition to standard Java remained marginal.

Testing library for novices
In 2007 we designed and implemented a new testing library
that automates the comparison of the values of arbitrary
instances of all classes (whether user-defined or a part of
the Java Standard Libraries), produces the test results with
display of the actual and expected values for each failed test
with a link to the source for the test.

We have used a very crude prototype of the library in the
Fall of 2007 and a reasonably stable version in the Spring
of 2008. The difference in the student’s experience has been
noticeable throughout the semester. Undergraduate peer
tutors who have taken the course in the previous years com-
mented on how much easier it is to enforce the design and
use of testing — and wished they would have had access
to our tester library when they took the course. We also
had fewer students who failed the course (2 out of 80 in the
Spring 2008, compared to 8—10 out of 80 in the previous
years).

But the most convincing evidence of success emerged with
the final projects. Students worked on similar final projects
at the end of both the Spring 2007 and the Spring 2008. The
goal of the project was to let the students implement their
own design of a reasonably complex program with some user
interactions (typically a game), properly documented and
tested (or so we hoped).

In the Spring semester 2007 the test coverage of the sub-
mitted final projects was dismal. In many cases there was
no test suite, in most cases the test cases tested only the
top level methods regardless of whether the students used
JUnit or our version of testing library that relied on the
user-defined same methods.

In the Spring 2008 there were only a handful of projects
from among 40 that did not include a substantial test suite.
There were several projects designed by average students
who followed the design recipe faithfully, tested every method
before designing the body, and ended up with a beauti-
ful working project with readable code and documentation.
Sadly, several of the projects with almost no tests (and which
barely worked) were written by students who had prior Java
experience and who were trying to create a project with
fancy user interactions, getting ensnared by their own trap
of poor design habits.

3. TESTER DESIGN AND USE

Understanding equality
We illustrate why the design of equality comparison is much
harder than the design of programs when dealing with com-
plex data. Suppose we want to verify that the binary search
tree after several insertions has the desired shape.

To insert into a binary search tree all we need to do is:

// in the Leaf class that implements or extends BST:
BST insert(Data d){

return new Node(d, this, this); }

// in the Node class that implements or extends BST:
BST insert (Data d){

if d.lessThan(this.data) return

new Node(this.d, this.left.insert(d), this.right);
else return
new Node(this.d, this.left, this.right.insert(d));}

However, to determine whether we constructed a correctly
shaped tree we need to implement the method

boolean same(BST that)

The method header in defined in the interface (or abstract
class) BST and the method has to be implemented in both
variants. However, we see that in the class Node we first
need to check whether that is an instance of the Node class.
For this we either need to use the Java operator instanceof
(not really in object-oriented style); or we need to add two
new methods: boolean sameLeaf(Leaf that) and boolean

sameNode(Node that) and use double dispatch to complete
the implementation; or we need to use the Visitor pattern.
Every alternative is much harder than the original prob-
lem and adds a new layer of complexity to the problem.
The design of equality tests provides a rich context for dis-
cussing object-oriented program design, but should be intro-
duced only when the student is ready to handle the concepts
needed to solve the problem.

Tester Design
The testing library (tester) leverages the Java reflection mech-
anism to analyze the program source. The user specifies the
name of the class that contains the data definitions and the
test cases (typically the Examples class). Each test case is
specified as an invocation of a method in the Tester class
and several test cases are typically grouped together in a
method with a name that starts with test. For example,
the following method may define tests for the method re-

duce mentioned in the earlier section:

Item bread = new Item("Bread", 100);
Item milk = new Item("Milk", 200);

void testReduce(Tester t){
t.checkExpect(bread.reduce(20), new Item("Bread", 80));
t.checkExpect(milk.reduce(30), new Item("Milk", 170)); }

The tester produces a report that consists of the display
of the values (class name followed by a list of fields and
their values) for all fields initialized in the Examples class,
the number of tests performed, the number of failed tests,
followed by a list of all failed tests. For each failed test the
tester displays the actual and the expected values, and a
link to the location of the test in the source code.

// a class to represent a book Examples:

class Book{ ---------------

String title;

int price; // in cents new Examples(

this.hamlet =

Book(String title, int price){ new Book:1(

this.title = title; this.title = "Hamlet"

this.price = price; } this.price = 2000)

this.abc =

// is this book cheaper that the given amount? new Book:2(

boolean lessThan(int amt){ this.title = "ABC"

return this.price < amt; } this.price = 1000))

} ---------------

Found 1 test method

import tester.*;

class Examples{ Ran 3 tests.

Book hamlet = new Book("Hamlet", 2000); 1 test failed.

Book abc = new Book("ABC", 1000);

Test results:

// test the method lessThan in the class Book --------------

void testLessThan(Tester t){ Error in the test number 3

t.checkExpect(hamlet.lessThan(1500), false); This test will fail

t.checkExpect(abc.lessThan(1500), true); tester.ErrorReport: Error trace:

t.checkExpect(abc.cheaperThan(1500), false, at Examples.testLessThan(Examples.java:10)

"This test will fail");

} actual: true

} expected: false

--- END OF TEST RESULTS ---

Special tests:

• For primitive types and wrapper classes all values
are converted to the corresponding primitive types and
compared using Java == comparison.

• Two double or float values are compared for equal-
ity within a relative difference initialized to a default
value before running the tests. It can be set by the
programmer at any time within the test suite.

• The comparison of circularly-referential data (for
example, a class Book with the field of the type Author
while the class Author contains a field of the type Book)
is handled correctly.

• Collections - Iterable: Comparison of two instances
of a data collection that represents a sequential data
structure (e.g. Iterable) traverses the structure and
matches the corresponding pairs of data.

• Collections - Map: Comparison of two instances of
a data collection that implements the Map interface
matches the two collections for their key-value pairs.

• The checkOneOf method tests whether the actual value
matches one of finite possible random values.

• The checkRange method tests whether the actual Com-
parable value falls within the range of the two given
values.

• A checkExpect method that tests whether the invoca-
tion of a method with the given name and arguments
by the given object throws the desired exception with
the expected message.

Imperative Tests
We mentioned that we use the tester initially in testing
the programs that handle Value Objects. While we believe
greatly in the benefit of this approach, the tester can be used
equally well for testing imperative programs.

For example, to test the method
void reduce(int amount))

in the class Item the test method would be:

void testReduce(Tester t){
// setup:
Item milk = (new Item("Milk", 200));
milk.reduce(30);
// test:
t.checkExpect(milk, new Item("Milk", 170)); }

Alternatively, if we teach students to design methods that
always return the object that invoked the method (this —
a preferred Java style), the method header would become:
Item reduce(int amount)); and the test method would be
the same as we have seen in the functional style.

User defined equality
To support students’ gradual transition to self-defined equal-
ity comparison the tester compares two objects in a class
that implements the ISame interface using its same method.
This way the students can implement the equality compari-
son for only some of the classes they define — learning grad-
ually to do all the work on their own and transition smoothly
to using JUnit.

4. FINAL REMARKS
Enforcing the TDD for several years, even before we had

the tools to fully support this approach, has had a signifi-
cant impact on our students. The instructors of upper level
courses uniformly comment on students’ better preparation,
a measurably better performance on the course pretests (1
or 2 failures compared with 30% failure prior to introducing
the curriculum). The co-op coordinators that work with our
students report and conduct extensive yearly evaluations of
the co-op experiences based on surveys of both the students
and the employers. The surveys show that the quality of the
co-op jobs our students get has increased significantly since
we introduced the TDD curriculum. They employers report
that the programming skills of our undergraduate students
surpass those of our Masters Degree students seeking co-op
employment.

The course instructors observed that after comparing in-
stances for value equality for several weeks, students under-
stand better the Java reference model, the effects of changing
the value of a field vs. changing the structure of a complex
piece of data and they have a much better understanding of
the different measures of equality one can define.

The http://ccs.neu.edu/javalib website contains the tester
library tutorial, sources, documentation and download jar
files.

The design of the library is based on the testing support
for ProfessorJ. The author wishes to thank her colleagues
on the TeachScheme/ReachJava team, especially Matthias
Felleisen for his support and Kathy Gray for her work on
ProfessorJ.

5. REFERENCES
[1] D. J. Barnes and M. Koelling. Objects First with Java:

A Practical Introduction Using BlueJ. Prentice Hall,
2003.

[2] K. Beck. Test Driven Development: By Example.
Addison Wesley, 2003.

[3] R. V. Binder. Testing Object-Oriented Systems:
Models, Patterns, and Tools. Addison Wesley, 2000.

[4] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Companion
of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, Anaheim, CA, pages 148–155, Oct, 2003.

[5] S. H. Edwards. Using software testing to move
students from trial-and-error to reflection-in-action.
SIGCSE Bulletin, 36(1):26–30, 2004.

[6] R. B. Findler, C. Flanagan, M. Flatt,
S. Krishnamurthi, and M. Felleisen. DrScheme: A
pedagogic programming environment for Scheme. In
H. Glaser, P. Hartel, and H. Kuchen, editors,
Programming Languages: Implementations, Logics,
and Programs, volume 1292 of LNCS, pages 369–388,
Southampton, UK, September 1997. Springer.

[7] K. E. Gray and M. Flatt. ProfessorJ: a gradual
introduction to Java through language levels. In
Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, Anaheim, CA, pages
170–177, Oct, 2003.

[8] D. Gries. A principled approach to teaching OO first.
SIGCSE Bulletin, 40(1), 2008.

[9] B. Hanks, T. Reichlmayr, C. Wellington, and
C. Coupal. Integrating agility in the CS curriculum:
Practices through Values. SIGCSE Bulletin, 40(1),
2008.

[10] D. S. Janzen and H. Saiedian. Test-driven learning in
early programming courses. SIGCSE Bulletin, 40(1),
2008.

[11] M. Koelling. Unit testing in BlueJ.
http://www.bluej.org/tutorial/testing-tutorial.pdf.

[12] J. Langr. Evolution of test and code via test-first
design.
www.objectmentor.com/resources/articles/tfd.pdfl.

[13] R. Pecinovský, J. Pavĺıčkova, and L. Pavliček. Let’s
modify the objects-first approach into
design-patterns-first. SIGCSE Bulletin, 40(1), 2008.

[14] V. K. Proulx and K. E. Gray. An introduction to OO
program design. SIGCSE Bulletin, 38(1), 2006.

[15] V. K. Proulx and R. Rasala. Java IO and testing
made simple. SIGCSE Bulletin, 36(1), 2004.

[16] J. Spacco and W. Pugh. Helping students appreciate
test-driven development (TDD). In Companion of the
21st annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, Portland OR, pages 907–913, Oct, 2006.

[17] M. Thornton, S. H. Edwards, R. P. Tan, and
M. Peréz-Quinones. Supporting student-written tests
of GUI porgrams. SIGCSE Bulletin, 40(1), 2008.

[18] D. West, P. Rostal, and R. P. Gabriel. Apprenticeship
agility in academia. In Companion of the 20th annual
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
San Diego, CA, pages 371–373, Oct, 2005.

APPENDIX

A. TEXTBOOKS REVIEWED
D. A. Bailey. Java Structures; D. A. Bailey and D. W. Bai-

ley. Java Elements: Principles of Programming; D. Baldwin
and G. W. Scragg. Algorithms and Data Structures: The
Science of Computing; D. J. Barnes and M. Koelling. Ob-
jects First with Java: A Practical Introduction Using BlueJ;
J. Cohoon and J. Davidson. Java 1.5 Program Design; N.
Dale, D. Joyce, and C. Weems. Object-Oriented Data Struc-
tures Using Java; P. J. Deitel and H. M. Deitel. Java How
to Program; J. Farrell. Java Programming; W. H. Ford and
W. R. Topp. Data Structures with Java; C. Horstman. Java
Concepts; E. B. Koff man and U. Wolz. Problem Solving
with Java; K. Lambert and M. Osborne. Java A Framework
for Program Design and Data Structures; J. Lewis and W.
Loftus. Java Software Solutions: Foundations of Program
Design; Y. D. Liang. Introduction to Java Programming;
M. Main. Data Structures and Other Objects Using Java;
D. S. Malik. Java Programming From Problem Analysis to
Program Design; D. D. Reily. The Object of Data Abstrac-
tion and Structures Using Java; D. D. Riley. The Object
of Java: Introduction to Programming Using Software Engi-
neering Principles; K. E. Sanders and A. van Dam. Object-
Oriented Programming in Java A Graphical Approach; W.
Savich. An Introduction to Computer Science and Program-
ming; P. T. Tymann and G. M. Schneider. Modern Software
Development Using Java; C. T. Wu. A Comprehensive In-
troduction to Object-Oriented Programming with Java;

