
Recursion and Grammars for CS2
Viera K. Proulx

Northeastern University
College of Computer Science

Boston, MA 02115, USA

vkp@ccs.neu.edu

Abstract

A programming exercise on recursion in which students
create drawings of simple and bracketed Lindenmayer
Systems provides a context for exploring additional
computer science concepts. The resulting drawings give
students a better understanding of the power of recursion as
well as the rate of growth of time complexity with multiple
successive recursive calls. We describe the exercise, the
concepts that need to be addressed to solve the problems,
and the results of using this exercise in our classes.

Introduction

A programming exercise on recursion in which students
draw Koch snowflake has become a staple of many
textbooks. The drawing is based on replacing each line
segment according to some rules and repeating the action
recursively for several layers. Unfortunately, in the standard
treatment, the replacement rules have to be hard-coded.
That means that the function to draw a side of the
snowflake has a one time utility - it only makes
snowflakes. If we decide to do a different fractal curve, we
have to rewrite the whole function.

Fractal curves such as Koch snowflakes may also be
described by simple grammars (or rewriting systems)
known as Lindenmayer systems [1]. The simple
Lindenmayer systems are defined by a grammar describing
the rewriting rules for different symbols. User decides how
many times should the rewriting rules be applied which is
equivalent to selecting the depth of recursion. At level 0
the grammar symbols represent one of the following three
actions that generate the drawing:

• move forward a fixed distance while drawing a line
all capital letters

• move forward a fixed distance while lifting the pen
symbol f

• turn (left or right) by a fixed angle symbols + and –

Partial support for this work has been provided by the NSF Leadership in
Laboratory Development, award #DUE- 9650552
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’97.
Copyright 1997 ACM 1-58113-499-1/97/0006…$5.00.

Capital letter S represents the starting string. At level zero,
the symbols in the rewriting rule for S generate the level 0
curve. The angle and the distance are fixed before the
drawing begins and remains constant throughout the
drawing process.

For example, the Koch snowflake is described by the
following grammar:

angle = 60°
S -> F––F––F

the starting string
F -> F+F––F+F

rewriting rule for symbol F at recursion levels > 0

The snowflakes at the first three levels would then be
represented by strings:

level 0: F ––F ––F
level 1: F+F––F+F––F+F––F+F––F+F––F+F

Spacing was designed to show the application of the
rewriting rule. At the next level we notice the exponential
explosion:

level 2:
F+F––F+F+F+F––F+F––F+F––F+F+F+F––F

+F––F+F––F+F+F+F––F+F––F+F––F+F+F+F––F+F
––F+F––F+F+F+F––F+F––F+F––F+F+F+F––F+F

A bracketed Lindenmayer system adds two new symbols to
the grammar, '[' and ']'. The left bracket '[' indicates that the
state of the Turtle (current position and heading) should be
saved, before proceeding with the next symbol. The right
bracket ']' indicates that the Turtle state should be restored
to the one saved with the matching left bracket.

The Exercise

We designed a programming exercise, in which the students
start by reading in the rules of the grammar. We allow
only the following rewriting symbols: S for the starting
string, and F, L and R and f. At level 0, the symbol f
represents a move without drawing, while symbols L, R,
and F represent one line segment. The recursive function
that creates the drawing has as its arguments the string to
traverse, the Turtle object, and the current level of
recursion. It traverses the string, examining each symbol,

and depending on the level of recursion either performing
the desired action or calling itself recursively with the
replacement string and a decreased level of recursion. The
drawing is initiated by calling this function with the
starting string as the argument.

For example, to draw the Koch snowflake at level zero, we
supply as argument the string F––F––F and the drawing
becomes a triangle. At level one, we again start with
traversing the string F––F––F but each time we see the
symbol F we call the function recursively with level 0 and
string F+F––F+F, thus describing how each side of the
triangle needs to be decomposed into four segments.

The recursive pattern used here is more complex than the
typical binary tree traversal or divide and conquer technique
used in quicksort. The degree of branching is much larger
and provides a more powerful representation of the
exponential growth of the number of steps. However,
because the result is visual, most of the mistakes students
make are quite obvious and easy to identify.

In order to be able to see the drawing, students and the
instructor have to resolve several issues related to the
display of the drawing as well as to the internal recording of
the state of the system. The key concepts are the
following:

• creation of the class Turtle that with member functions
Move, Skip, TurnLeft, TurnRight

• resolving the problem of scaling the image to fit the
display window

• saving the state of a process before a function call and
restoring it on return

The class Turtle is modeled after the well-known Logo
Turtle. Internally, for our purpose, it records its heading,
the size of the step, and the angle of the turn. It is a nice
example to illustrate the design and use of classes in a non-
trivial context.

The scaling issue is more complex and should be examined
in several laboratories leading up to this exercise. Scaling
is at the heart of any graphics display exercise and should be
one of the core concepts students become familiar with
during their first two years of CS study.

In our solution to this problem, the recursive drawing is
'created' twice. The first time we record the bounds of the
region traversed by the Turtle. We use the result to
determine the scaling factors, which are then used when the
drawing is actually made in the second call to the drawing
function.

To implement the bracketed L-systems the left bracket
symbol '[' activates saving of the current Turtle object and
passing a new copy to the recursive function call. The
right bracket ']' returns to using the saved Turtle object,
which includes moving the current 'pen location' to the
location recorded in the saved Turtle object. The design of

this save/restore operation allows us to highlight the issues
that need to be addressed during any save/restore operation
in a stack-like context: creation of a copy of the object
being saved and making sure that the all relevant
information including the graphics state is restored
correctly.

The User Interface

We believe that to get the greatest rewards from running
this exercise, the user interface should include a number of
options. First of all, the user should be allowed to use the
same grammar several times with different levels of
recursion to see the growth of complexity.

Next, the user should have the option to see the string
generated by the grammar. This is essential during the
debugging stage to locate errors that cannot be detected by
viewing the drawing. For example, if the angle is
erroneously set to 90° when drawing Koch snowflake, user
sees only a straight line at level 0. By viewing the
generated string, the error is easily detected. Observing the
generated strings is also helpful in illustrating the full
impact of the recursion (see below).

Finally, user should be also allowed to run the program
with several different grammars in a row - to make
comparisons as well as experiment with minor
modifications of grammars.

The Rewards

The exercise is very exciting. The recursion used to
implement the drawing is a bit more complex than most of
the straightforward exercises seen in standard textbooks.
Students see, that recursion can be a very powerful tool
when used in a non-trivial way.

Students also learn something about drawing complex
images. It is crucial for the success of this exercise that the
Turtle record the exact position in real coordinates and that
the scaling is applied only at the time when a line is drawn
or a move or turn is made. Otherwise, the round-off error
quickly accumulates and destroys the symmetry of the
drawing.

When students run their program with different levels of
recursion, they observe the growth in the number of steps
needed. The rate of growth with the increasing the levels of
recursion becomes very concrete. Students can also print
out the strings generated by the grammar and count the
number of moves the turtle makes at each of the successive
levels.

Another lesson is in seeing a large number of different
objects generated from the same underlying formal system.
Students seldom experience situations that illustrate the
power of describing concrete objects by a formal set of
rules. Here, they may begin to understand, how the

definitions of other formal systems help understand and
manage these complex situations.

References

1. Przemyslaw Prusinkiewicz and Aristid Lindenmayer,
The Algorithmic Beauty of Plants, Springer Verlag,
New York, 1990.

2. Jack Ryder, "Using Parallel String Rewriting Systems
to Generate Fractal Images", Proceedings of the
Twelfth Annual Eastern Small College Computing
Conference, October 25-26, 1996, pp. 76-78.

Sample Drawings

Hexagonal Gosper Curve:

angle = 60°
S -> L
L -> L+R++R-L--LL-R+
R -> -L+RR++R+L--L-R

Quadratic Koch Island

angle = 90°
S -> F-F-F-F
F -> F+FF-FF-F-F+F+FF-F-F+F+FF+FF-F

Bracketed OL-system

angle = 20°
S -> F
F -> F[+F]F[-F][F]
N = 4

angle = 20°
S -> F
F -> F[+F]F[-F][F]
N = 6

