
Introductory Computing:
The Design Discipline

Viera Krňanová Proulx

Northeastern University, Boston, MA, USA
vkp@ccs.neu.edu

1

Informatics: The Science of Design

• Introduction: Design in the context of information
systems

• Didactics: Systematic problem solving

• Didactics: Information and data: the connection

• Didactics: Design of abstractions = libraries

• Didactics: Libraries for the beginners

2

3

Before computers: concrete complex systems

• Automobiles

• Skyscrapers

• Slovak railroad system

Informatics: The Science of Design

4

Complex web pages

Systems for the weather forecasts

Medical information systems

Wikipedia

Computer games

Social computing

Informatics: The Science of Design

5

Simple language context

Systematic didactics for program design

Connection between information and data

Test-first design with appropriate support

Computer games - via libraries - focus on the model

Managing complexity through abstractions

Program by Design:
Design-Based Introductory Curriculum

6

Bootstrap
grades 6 - 8, very detailed curriculum, clear goals
software support

TeachScheme!
secondary schools, introductory college
textbook, DrRacket student languages, libraries

ReachJava
second semester, class-based, object-oriented
libraries for game design, testing, textbook (draft)

Die Macht der Abstraktion
Herbert Klaeren, Michael Sperber, Tübingen,
Germany (Dein Program in DrScheme)

Program by Design:
Design-Based Introductory Curriculum

7

Bootstrap
“I program my own video games” (and learn algebra)

TeachScheme!
Interactive games with timer, key and mouse
Client-server games over internet

ReachJava
Interactive games with timer, key, mouse, sound
Systematic design and use of abstractions
Transition to full language, libraries, trade-offs

Program by Design:
Design-Based Introductory Curriculum

8

Bootstrap
“I program my own video games” (and learn algebra)

Focus on understanding the concepts:
coordinate system
evaluation of expressions
substitution of values for variables
conditionals, logical expressions
functions with one or two variables
Pythagorian theorem - to detect collisions

Program by Design:
Design-Based Introductory Curriculum

9

Bootstrap
show the web site
run the Ninja Game

TeachScheme!
show the first program (train)

ReachJava
run the musical frogger

Program by Design:
Design-Based Introductory Curriculum

10

Design Recipe for a function (a procedure)
1. Think what are the inputs and outputs

2. Write down the purpose statement and the header
(contract)

3. Make examples of use with expected outcomes

4. Inventory: make a list of all data parts and functions/
methods/procedures that you can use

5. Design the body of the function/procedure

6. Use the examples from step three as test cases

Functions with the given (input) data and output data

Didactics for Program Design

• Find the largest prime in a list of numbers

• Sort a list of names by alphabet

• Where is the given letter in the given String?

11

Functions with the given (input) data and output data

Didactics for Program Design (Step 1)

• Find the largest prime in a list of numbers

inputs: a list of numbers output: number

• Sort a list of names by alphabet

inputs: list of String-s output: list of String-s

• Where is the given letter in the given String?

inputs: character, String output: int

12

Analyze the problem, the types of inputs, outputs

Didactics for Program Design (Step 1)

• Find the largest prime in a list of numbers

// find the largest prime in the given list of numbers

int largestPrime(List mylist)

• Sort a list of names by alphabet

// produce a sorted list from the given list of names

ListofString sort(ListofString mylist)

• Find the position of the given letter in the given String

• ... produce -1 if not found

// produce the location of a letter in the given String

int whereIs(char c, String text)

13

Purpose statement, the header of the function/procedure

Didactics for Program Design (Step 2)

• Find the largest prime in a list of numbers

largestPrime(12 17 5 24 6) -> 17

largestPrime(4 9 6) -> ??

• Sort a list of names by alphabet

sort(“hi” “ciao” “bye”)->(“bye” “ciao” “hi”)

• Find the position of the given letter in the given String

whereIs(“b”, “mama”) -> -1

whereIs(“a”, “mama”) -> 1

14

Examples of use with the expected outcomes

Didactics for Program Design (Step 3)

• Find the largest prime in a list of numbers

inventory:

empty(mylist) --- boolean

if not:

... first(mylist) -- int

... rest(mylist) -- List of numbers

... largestPrime(rest(mylist))

... needed: isPrime(int) -- boolean

 to use as ... isPrime(first(mylist))...

15

-structure -- select fields, record their types
-variants -- process every variant separately
-list all functions/procedures/methods that can be used with the available data

Didactics for Program Design (Step 4)

• Find the largest prime in a list of numbers

body:

if (empty(mylist))

return ??noPrimes??

else

if (isPrime(first(mylist))

return max(first(mylist), largestPrime(rest(mylist)))

else

return largestPrime(rest(mylist))

16

Didactics for Program Design (Step 5)

Only now work out the body of the function/procedure

• Sort a list of names by alphabet

inventory:

empty(mylist) --- boolean

if not:

... first(mylist) -- String

... rest(mylist) -- ListofString

... sort(rest(mylist)) -- ListofString (sorted)

... needed: insert(String, ListofString) -- ListofString (sorted)

17

-structure -- select fields, record their types
-variants -- process every variant separately
-list all functions/procedures/methods that can be used
with the available data

Didactics for Program Design (Step 4)

• Find the largest prime in a list of numbers

body:

if (empty(mylist))

return mylist

else

insert(first(mylist), (sort(rest(mylist)))

wish list:

// insert the given name into the sorted list of names

ListofString insert(String, Listof String)

18

Didactics for Program Design (Step 5)

Only now work out the body of the function/procedure

19

-structure -- select fields, record their types
-variants -- process every variant separately
-list all functions/procedures/methods that can be used
with the available data

Didactics for Program Design (Step 4)
• Find the position of the given letter in the given String

inventory:

char c

String text

functions for Strings:

// produce a substring of String s starting at the location i until location j

// produce empty of cut off String if the given String is not long enough

String substring(int i, int j, String s)

20

Didactics for Program Design (Step 5)
• Find the position of the given letter in the given String

body:

[for (int i = 0; i < length(text); i++)

if (substring(text, i, i+1) == c)

return i;

return -1;]

Only now work out the body of the function/procedure

21

Verify the correctness - the tests are defined in the third step

Didactics for Program Design (Step 6)
• Find the largest prime in a list of numbers

largestPrime(12 17 5 24 6) -> 17

largestPrime(4 9 6) -> ??

• Sort a list of names by alphabet

sort(“hi” “ciao” “bye”)->(“bye” “ciao” “hi”)

• Find the position of the given letter in the given String

whereIs(“b”, “mama”) -> -1

whereIs(“a”, “mama”) -> 1

Information and data: the connection

• primitive/basic types: numbers, Strings, images, bool

• clases/structures: several pieces of data are needed to
describe the information

• references: a piece of data in one class/structure is an
instance of another class/structure

• variants: several variants of data share common properties

• combinations of these possibilities

22

Analyze the problem (according to the above criteria),
produce data definitions; make several examples of data

Design Recipe for a Data Definition

• primitive/basic types: int, String, boolean,
image

• classes/structures:

• references:

23

Book
String title
String author
int price

Book
String title
Autor author
int price

Author
String name
int year

Information and data: the connection

• variants:

•

24

Book
String title
String author
int price

Print
int pages

Audio
int duration

Electronic
String url

Information and data: the connection

• combinations:

•

25

Tree

Leaf Branch
Datum data

Tree left
Tree right

Datum
... fields

Information and data: the connection

26

Information and data: the connection

27

 +---------+
 | Marta |
 | CEO 100 |
 +----+----+
 |
 +-----------------+-----------------------------+
 | |
 +-------+-----+ +---+---------+
 | Danko | | Anka |
 | Operacie 70 | | Financie 20 |
 +------+------+ +------+------+
 | |
 +-----------+-------------------+------------+ +--+------+
 | | | | |
+-------------+ +-------+-----+ +----+--------+ +-----+ +----+--------+
| Jurko | | Janka | | Palko | | A 3 | | Peter |
| Sekcia-A 25 | | Sekcia-B 15 | | Sekcia-C 20 | +-----+ | Sekcia-D 10 |
+----+--------+ +-----------+-+ +----------+---+ +----+--------+
 | | | |
 +--+-------------+-------+ +-+-----+ +-+---+ +--+---+
 | | | | | | H 6 | | B 5 |
+-+------------+ +-+---+ +-+---+ +-+---+ +-+---+ +-----+ +------+
| Milan | | D 4 | | E 2 | | F 8 | | G 6 |
| Skupina-A 10 | +-----+ +-----+ +-----+ +-----+
+--+-----------+
 |
+--+--+
| C 6 |
+-----+

Information and data: the connection

28

 +---------+
 | Marta |
 | CEO 100 |
 +----+----+
 |
 +-----------------+-----------------------------+
 | |
 +-------+-----+ +---+---------+
 | Danko | | Anka |
 | Operacie 70 | | Financie 20 |
 +------+------+ +------+------+
 | |
 +-----------+-------------------+------------+ +--+------+
 | | | | |
+-------------+ +-------+-----+ +----+--------+ +-----+ +----+--------+
| Jurko | | Janka | | Palko | | A 3 | | Peter |
| Sekcia-A 25 | | Sekcia-B 15 | | Sekcia-C 20 | +-----+ | Sekcia-D 10 |
+----+--------+ +-----------+-+ +----------+---+ +----+--------+
 | | | |
 +--+-------------+-------+ +-+-----+ +-+---+ +--+---+
 | | | | | | H 6 | | B 5 |
+-+------------+ +-+---+ +-+---+ +-+---+ +-+---+ +-----+ +------+
| Milan | | D 4 | | E 2 | | F 8 | | G 6 |
| Skupina-A 10 | +-----+ +-----+ +-----+ +-----+
+--+-----------+
 |
+--+--+
| C 6 |
+-----+

How many people work in the unit with the given name?

Information and data: the connection

29

What is important:

•There are many types of data, we can combine
them if the information consists of several types or
variants

•The goal of a program is to produce from the given
data some new data that represents new
information

•Every function or procedure should handle just one
task: use helper functions/methods when needed

•Input-output is not important on its own:
processing of the inputs and preparation of data
for output are tasks to be programmed as well

30

•It is important to know how to represent information
as data and how to interpret data as the
information it represents

•Every function/procedure should be designed
systematically, test-first approach...

•Build larger programs by designing abstractions

if code is repeated (with only small differences),
produce a program where the differences are
represented by parameters and the common
part appears only once

What is important:

• Mark all places where the similar code segments differ.

• Replace them with parameters and rewrite the solution
using them as arguments.

• Rewrite the original solutions to your problems by
invoking the generalized solution with the appropriate
arguments.

• Make sure that the tests for the original solution still
pass.

31

Design of abstractions = libraries
Design Recipe for Abstractions

• interfaces -- abstract classes

• function objects

• parametrized types

• iterators

• abstract data types

32

The keys to understanding how to build/use reusable code

Design of abstractions = libraries

33

Create an abstract class: common fields, methods

Design of abstractions: abstract class

34

Create an abstract class: common fields, methods

Design of abstractions: abstract class

• sort a collection of the type T (what ordering?)

comparator function: (T, T) -> int

• select all items that fit some criterion
selector predicate: (T) -> boolean

• perform the desired action
action method to perform

35

Difficult if the language does not support first class functions

Design of abstractions: function objects

• binary search trees of numbers, strings, books

Tree<T> --> Tree<Integer>, Tree<String>, ...

• lists of persons, songs, images

List<T> --> List<Person>, List<Song>, ...

36

Not needed in untyped languages

Design of abstractions: parametrized types

Some algorithms require that we examine all
elements of a data set, one at a time.

Iterators, visitors, and specially designed classes
or language constructs provide such service.

The algorithms then rely on these services to
generate the needed data items, without the
knowledge of how the data set is implemented.

37

Iterator may generate data from an array or from a file...

Design of abstractions: iterators

Iterator<T> (destructive, imperative):

boolean hasNext()

T next()

Traversal<T> (immutable iterator, functional):

boolean isEmpty()

T getFirst()

Traversal<T> getRest()

38

Iterator may generate data from an array or from a file...
Program just handles the generated data one item at a time

Design of abstractions: iterators

• Vector (ArrayList) -- direct access structures

• Stack, Queue

• Priority Queue

• Map, HashMap -- (key - value) pairs

• Graph

39

The behavior is specified by the functions/methods only
Implementations can vary
See several implementations -- understand the trade-offs

Design of abstractions: abstract data types

• Pedagogical intervention

ask student where in the design recipe are they

follow up with questions in the recipes

• Self-regulatory learning

students learn to ask the same questions

learn to work out the problems

40

Design Recipes - didactics

41

Libraries for the beginners: Java

•Typical programming languages are not suitable
for a beginner

•They contain features that the beginner does not
understand, but the error messages refer to them

•Programming of inputs, outputs, and user
interactions is difficult and beginner needs to learn
a lot before he is ready to program them

•Design of tests requires understanding of the
different ways of evaluating equality of data

42

 Programing language for the beginners: FunJava
- Every class can implement only one interface

- Every field must get initial value when defined in
the class or when the constructor is invoked

- The value of the field never changes

- The language has only two statements:
return expression
if (condition) statement else statement

Typical programing language is not suitable for a beginner

Libraries for the beginners: Java

43

 Programing language for the beginners: FunJava
- Every class can implement only one interface

- Every field must get initial value when defined in
the class or when the constructor is invoked

- The value of the field never changes

- The language has only two statements:
return expression
if (condition) statement else statement

Libraries for the beginners: Java

Contains features that the beginner does not understand,
but the error messages refer to them - not a problem here

44

 Library for the beginners: World, Canvas
- simple functions for drawing of geometric
shapes (circle, disk, rectangle, line, text)

- World: (programming of interactive games)
Canvas theCanvas -- accessible field

where the game scene is drawn
boolean draw() -- method that draws the

scene

Programming of inputs, outputs, and user interactions is
difficult and beginner needs to learn a lot before he is
ready to program them

Libraries for the beginners: Java

45

 Library for the beginners: World, Canvas
-World: (programming of interactive games)

- actions:
World onTick()
World onKeyEvent(String ke)
boolean endOfWorld()

- world begins the animation by invoking
bigBang(int width, int height, double tick)

Libraries for the beginners: Java

Programming of inputs, outputs, and user interactions is
difficult and beginner needs to learn a lot before he is
ready to program them

46

 Library for the beginners: World, Canvas
- World: (programming of interactive games)

for advanced programmers
mouse actions
sound (MIDI notes to play on tick/key

(programing of sequences of notes and
their combinations)

universe: client-server with messages

Libraries for the beginners: Java

Programming of inputs, outputs, and user interactions is
difficult and beginner needs to learn a lot before he is
ready to program them

47

 Library for the beginners: Tester

• special library for the design and evaluation of tests

• Examples class: client for student code: data, methods

- tests compare two objects by their value

- compares inexact values within the given tolerance

- special tests for constructors, exceptions, iterators,
one-of options, value within a range, ...

Libraries for the beginners: Java

Programming of inputs, outputs, and user interactions is
difficult and beginner needs to learn a lot before he is
ready to program them

48

 Library for the beginners: Tester
- produces a report with all results:

prints the values of all objects (pretty-print)
produces the results of all tests
if the test fails,

shows side-by-side the actual and expected values
marks the first place where the values differ
provides a link to the failed test

Libraries for the beginners: Java

Programming of inputs, outputs, and user interactions is
difficult and beginner needs to learn a lot before he is
ready to program them

49

What is important:

• Instead of just using libraries teach students how
libraries are built

function(objects) that compare data

algorithsm that use function(objects) (sort, filter,
andmap)

• Abstract data types and their implementation

• Foundations of evaluation of complexity of
algorithms and data structures

50

• Principles of processing data from inputs and
generating data for outputs:

conversion of a String to numeric value it
represents

encoding of data when saved in files

event handling - principles, and their use

input and output streams

• Principles of design:

test-first design

one task - one function/procedure

What is important:

51

Thank you for listening
People:

Matthias Felleisen, Matthew Flatt, Robby Findler, Kathi Fisler, Shriram
Krishnamurthi, Emmanual Schanzer, Viera K. Proulx, Stephen Bloch

Program by Design:

http://www.programbydesign.org

Java libraries:

http://www.ccs.neu.edu/javalib

Laboratories, materials:

http:://www.ccs.neu.edu/home/vkp/Teaching

Curriculum for 6-9 grade:

http://www.bootstrapworld.org

