
Constructionism 2010, Paris

 1

Music in Introductory Object Oriented
Programming

Viera K. Proulx, vkp@ccs.neu.edu
College of Computer and Information Science, Northeastern University, Boston, MA , USA

Abstract
Our Java-based idraw library has been designed to give a novice Java programmer the tools to
design a simple interactive animated graphics-based game. The programmer focuses on the
design of the game behaviour and representation of the game scene in terms of simple shape-
based graphics. It has been used by hundreds of students over the past several years. This
paper presents the Java isdraw library that extends our idraw library by giving the programmer
tools to add musical effects to their game.

The new library provides the opportunity for students to practice working with sequences of
data, designing loops, and designing classes that represent musical phrases, melodies, chords,
and effects. It also illustrates the connection between the information and its representation as
data. Of course, the addition of musical effects to an interactive game is a great motivator, making
the learning more concrete and challenging.

 Figure 1. Frogger game designed with isdraw library.

Our pedagogy enforces systematic unit testing from the beginning. The design of the library that
supports musical and sound effects makes it possible for students to play the tunes before
embedding them in the game, and design tests for their sounds prior to playing them. Our goal is
to combine constructive exploration with structured design discipline.

Keywords (style: Keywords)
Introductory computing; object-oriented programming; games and music; constructionism

Constructionism 2010, Paris

 2

Introduction
The TeachScheme/ReachJava curriculum focuses on introducing students to solid program
design principles from the beginning. Several software artefacts that allow the student to focus
on the key design concepts support the curriculum. At the beginning the teaching languages
within the DrScheme programming IDE allowed student to begin programming without learning
complicates language syntax, and with the ability to evaluate small program segments
interactively. Over the years, the support for the first part of the curriculum, known as
TeachScheme! has grown to include support for unit testing, support for the design of graphics-
based interactive games, and, most recently, support for distributed program design with several
clients communicating with a server. The most important feature of all these teachpacks/libraries
is the ease of programming --- requiring only the basic programming skills.

Over the past eight years, we have been developing the next part of this curriculum, focusing on
the program design in object-oriented style for class-based languages. Our curriculum starts with
a simple Java-like language NeuJava, and progresses to the standard Java language as
students see the need for language support for increasingly more sophisticated design of
abstractions and libraries. Besides providing the language environment, over the years we have
designed a tester library that supports unit testing within the constraints of the language
knowledge of a novice student. This library is now used extensively in introductory courses, even
when the instructors do not follow our curriculum. We have also designed and used extensively
libraries that make it possible for students to design graphics-based interactive games, using
only the very basic language skills --- working only in the mutation-free NeuJava language (the
draw library). The more advanced version of these libraries uses imperative style and allows
students to convert their games into Java Applets by adding with only a small wrapper class to
initialize the applet (the idraw and the adraw libraries). But except for using the imperative
programming style the library still asks the programmer to only provide the game model
behaviour and the representation of the game's graphics as a simple shape-based graphics
drawing.

Today's games nearly always include musical background and sound effects. We describe our
new library that allows the beginner programmer add musical background and sound effects to
their games. Additionally, the new sound library also provides a context for experimentation with
musical phrases, and combines learning about music with learning to design programs that deal
with sequences, and a variety of ways sequences can be manipulated and combined. The two
versions, isdraw and asdraw are again targeted to Java Applications or Java Applets

The Tune Bucket and The World Library
The idraw library defines an abstract class World that builds a frame with a Canvas for the
game display and declares several abstract methods that the student needs to implement. There
is onTick method that represents the game action on each tick of the clock, the onKeyEvent
method that represents the action in response to the different key presses, the draw method
that defines the game display from the current state of the user's world, and a bigBang method
that defines the initial world, the clock speed, and the size of the game Canvas. In a typical
game, some objects move on each tick, some objects are controlled by the key presses, and the
game ends when some object collide, or run out of lives.

The isdraw library adds support for sound effects and music exploration. An English saying
describes musically inept people as those who cannot carry a tune. The whimsical response is
that I can carry a tune - in a bucket. So, for the programmer with only a limited musical
knowledge, we provide two buckets (instances of the class TuneBucket) for carrying the tunes:
the keyTunes bucket for defining which notes are to be played in response to the key presses
and the tickTunes bucket for defining the tunes to be played at each tick of the timer.

Constructionism 2010, Paris

 3

Originally, the library provided a list of constants that represents the pitches over three octaves.
A more sophisticated musician would use the actual MIDI pitch codes directly. The two buckets
get filled with an arbitrary collection of notes to be played during the event handling method. If
the programmer wants to make sound when a key is pressed, he includes in the onKeyEvent
method a call to keyTunes.addNote method that consumes as arguments the instrument to
play and pitch of the note to play. Each key press plays the tune for one-quarter-note duration. In
a similar manner, invoking the tickTunes.addNote method within the onTick method plays
the given note when the onTick method is invoked. The notes added to the tickTunes bucket
are played until the next tick event. We expected students to compose the tune as a list of notes
and select the next note in the list on each tick.

Initially, this seemed to be a very primitive design, having no provisions for the duration of the
tunes, little provision for repeating a theme, or for playing more sophisticated sounds. We let our
students use the first prototype of the library in the fall 2009. A programming pair that included a
musically talented student produced a Frogger game with an exciting jazzy background music
that made the game quite impressive. Their code included several extensive lists of tunes; with
one form each list to be played at each tick. They figured out how to represent the tempo, they
defined a method that transposed the tune and/or scaled, it. Their work has been an inspiration
to add tools and abstractions to our library so that both, musically talented, and musically
challenged students would be able to add sound effects to their games.

During the Spring 2010, we were still using still the basic version of the library, but we gave the
students several examples of what kind of sounds and music they can construct from the given
building blocks. Many students explored the ways of generating polyphonic melodies, adding
sound effects at the critical points during the game, annotating their code with auxiliary
representation of the music data. A student with a serious interest in music constructed a
sequencer application. The composer could add notes to a grid display where the height of a
coloured marker represented the pitch, the horizontal axis represented the time, and the colour
of the marker defined the instrument that should play the note. When the play mode was turned
on, a thin vertical line moved across the grid and all notes that the line crossed were played.

This confirmed our prediction that a tool like this will inspire students to explore and construct
interesting sound sequences and music --- all while learning the basic skills of writing programs
that combine sequences of data into more complex structures.

Making Music: Evolution of the Library
Playing notes
The harpsichord music from the Baroque era had no provision for playing the note for extended
duration. The playing of a sequence of quarter noted followed by a half note was accomplished
by the timing of the initial key presses. Initially, we have adopted a similar technique for
representing the note duration. We illustrate this on an example. The following sequence
represents the first four lines of the Frére Jacques tune:
noteC,0,0,0,noteD,0,0,0,noteE,0,0,0,noteC,0,0,0,

noteC,0,0,0,noteD,0,0,0,noteE,0,0,0,noteC,0,0,0,

noteE,0,0,0,noteF,0,0,0,noteG,0,0,0,0,0,0,0,

noteE,0,0,0,noteF,0,0,0,noteG,0,0,0,0,0,0,0

Three silent ticks follow each quarter note; seven silent ticks follow a half note. etc. The
constants noteD, noteG, are the names for the corresponding pitches. That means that the
number of silent notes after the note is played represents the duration of the note. Surprisingly,
this allows for constructing interesting and amusing musical sequences.

Constructionism 2010, Paris

 4

Representing notes
After our initial experiences with students it became clear that this tool could be extended to
support extensive exploration of musical features and constructions without compromising our
design-driven pedagogy of programming instruction. Additionally, we believe, the design of the
library can serve as a model of different techniques of program design.

Our first challenge was to design a clean and robust representation of the MIDI notes. From
students; point of view this is a wonderful example of multiple representations of information as
data. One of the representations consists of the pitch and the duration of the note, another
one specifies the note name (e.g. F), its modifier (sharp, flat, or natural), the octave on the
piano keyboard, and the duration of play. Rather than defining methods that perform the
conversion between the different representations, we defined a Note class with several
constructors, each accepting a different representation of the note, but each of them initializing
not just the pitch and duration field, but also the note name field, the modifier, the
duration, and a field snote that records its representation as a String. So, a note
representing the middle C, playing for 2 beats can be defined in either of the following ways:

Note c4n2V1 = new Note("C4n2");

Note c4n2V2 = new Note(60, 2);

The need for multiple representation of the same information and the use of constructors to
make this possible is illustrated here in a compelling way.

Extending the Tune Buckets
Initially, the tickTunes and the keyTunes tick buckets limited the duration of each note to one
tick. To make it possible for a note to be played over several time ticks, we needed to modify the
design and the behaviour of these TuneBucket-s. Furthermore, in the initial version the
programmer had to add the notes to the TuneBucket one at a time.

Music is a wonderfully complex time sequence. The MIDI synthesizer allows us to play up to 16
instruments at a time, and play on many of the instruments a polyphonic melody (a chord). Our
goal in extending the library was to allow the musically gifted student to work with as many
features of the MIDI interface as possible, yet keep intact the original simple setup for those that
are musically challenged, or do not want to create elaborate musical structures.

Our new note representation includes the duration. We decided to limit the granularity to
1/16th note playing for one tick. So, a note of duration 2 is 1/8th note, note of duration 4 is
a ¼ note. Of course, the actual time needed to play one note is set when we start the timer and
specify the rate at which the time events should happen.

To capture the timing information and act on it, we added two new TuneBuckets to our World,
and added method nextBeat to the Note class that simulates playing of the note for one beat
by decreasing its duration. The currentTickTunes and currentKeyTunes TuneBuckets
represent the list of notes currently playing. Instead of stopping the playing of all notes that
started on the previous tick, only those whose duration has decreased to 0 are stopped. All
notes added to the tune bucket on a tick or key event start playing, and are then moved to the
current buckets. These are advanced to the next beat on each tick; the notes that fell silent are
stopped and removed from the current buckets.

Designing Tunes
One can think of music as being a collection of scores, one for each instrument that needs to be
played in a synchronized sequence. To model this, we designed a Tune class that represents
one time event for an instrument. It includes a field that identifies the channel on which to play
(or the instrument we wish to play) and a Chord --- a collection of Note-s to play. We then allow

Constructionism 2010, Paris

 5

the programmer to add notes to the TuneBucket in any of the following ways: a single note, a
single note given only by its name as a String, a single pitch (which then plays for one beat), a
Chord, a Tune, or an Iterable collection of Tune-s, or an entire TuneBucket. This provides
the flexibility for how the programmer organizes the musical sequences.

The TuneBucket now contains a collection of 16 Tune-s --- one for each channel in the current
MIDI program. New notes, chords, and tunes are added to the Chord associated with the Tune
for the corresponding instrument.

Playing the notes and instruments
To allow playing the music apart from the interactive game and to promote further exploration of
the musical structure, we added a MusicBox class. It initializes the MIDI synthesizer to a default
program, or to the program given by the programmer, and provides the method to play or stop
the given Tune or a collection of Tune-s. The game World class then uses an instance of the
MusicBox to play and stop the Tune-s in its TuneBucket-s.

Combining notes and instruments
Rather than providing a specific structure for the melodies students compose, we suggest
exercises that gradually lead the student to understanding how music is structured and how
various components can be combined and used to generate the next collection of Tune-s to
play. So, the student may start with a simple sequence of Note-s, compose a canon as a
sequence of Chord-s, create an inversion, transposition, or glide reflection from the original
sequence, and compose those into a new sequence of Chord-s. The Chord sequence can then
be played on several different instruments.

We use this to motivate the design of iterators that deliver the next collection of Tune-s to play at
the next tick, and use circular iterators to create a musical sequence in the style of piano roll,
that repeats a melody sequence indefinitely.

Unit testing
The programs students design define the behaviour of the program in response to the tick and
key events. Adding the desired music data to the appropriate TuneBucket before each event is
invoked generates all musical effects. During the program design stage, students can design
complete unit tests that verify that the expected music data has been generated for each tick or
key event. To make this possible, wee add methods that allow the student to examine the
current state, and the effects of advancing to the next beat for each of the classes we designed.
The students can then test that the nextBeat method modifies the note sequence
appropriately, and that when building a collection of notes to be played on the next tick (e.g. a
Chord), the collection consists of the expected notes.

We believe strongly that developing a solid design discipline that included systematic unit test
design and test evaluation is essential to making students confident and competent
programmers, Additionally, our tests-first approach forces students to think through the problem
carefully and understand the underlying issues before writing the code.

The Pedagogical Perspective
Our draw and idraw libraries have been designed to give the students an environment in which
they can construct their own worlds and practice on an open-ended problem the basic program
design skills. Besides providing a motivation for learning and exploration, it serves a pedagogical
purpose as well. Students learn to design fairly complex collection of classes that interact in a
number of ways: colliding objects, object aware of the locations of other objects, objects whose
behaviour depends on other objects. By focusing on the game model we can insist on proper
design, code that is well organized, documented, and tested.

Constructionism 2010, Paris

 6

Students built games such as Frogger, ConnectFour board game, the classic Snake game,
Tetris, traffic simulation, space invaders, and a number of others. However, while the class
interactions were quite complex, only a few of these required extensive manipulation of multiple
collections of objects.

Of course, adding music and sound effects to the game makes the game more exciting and
motivates students even more. But that is not the main reason we decided to extend our
libraries. Working with the music sequences provides a rich environment for practicing
programming with arrays, ArrayLists, and loops. Our exercises ask students to combine
several melody sequences together, generate chords, cord sequences, transpose the music to a
different key, or construct a canon. They build new classes to represent the complex musical
sequences with the built-in iterator to generate the next set of instructions for the tickTunes
TuneBucket.

Our experiences have been great. Students are eager to add musical effects to their games and
get motivated to manage complex loops so their music sounds just right. Furthermore, after
working with similar games in their first semester, students start loosing motivation when the
new game designed in the object oriented style differs little from the one they have designed in
the functional style. Adding the sound components makes the whole game design more
interesting.

Acknowledgements and Further Plans
This work has been inspired by Erich Neuwirth, especially his pedagogical use of music with
spreadsheets, by Uri Wilensky and his team's use of music within NetLogo, and Jenny
Sendova's exploration of the music phrase composition as examples for working with sequences
of data. Erich Neuwirth's work on spreadsheets and music was especially influential. His
spreadsheet language is used to create musical effects by manipulating music representation
within the spreadsheet. Our project emulates some of this work in the context of a standard
introductory object-oriented programming environment. The author wishes to thank Erich
Neuwirth for his continued support and his encouragement for experimenting with music-
supported pedagogy.

We plan to extend this work to provide tools for the display of the music in a variety of ways and
to leverage the key event handling to allow students to enter the musical sequences by playing
the computer keyboard. We will add the library to our website at http://www.ccs.neu.edu/javalib/
and include tutorials, sample code, as well as downloads for both the library files and the source
code.

References
Felleisen, M., Findler, R. B., Flatt M., and Krishnamurthi S. (2001) How to Design Programs. MIT
Press.

Holbert, N., Penney, L., & Wilensky, U. (2010). Bringing Constructionism to Action Gameplay.
Paper to be presented at Constructionism 2010, Paris

Neuwirth, E. (2010) Music and Spreadsheets. http://sunsite.univie.ac.at/musicfun/.

Proulx V.K. (2009a) The pedagogy of program design. In Proceedings of DIDINFO 2009.
Brusno, Slovakia, pp. 65 − 74.

Proulx V.K. (2009b) Test-driven design for introductory OO programming. SIGCSE Bulletin
2009. 4191), pp. 138-142.

Sendova, E. (2001) Modelling Creative Processes in Abstract Art and Music, Eurologo 2001,
Proceedings of the 8th European Logo Conference 21-25 August, Linz, Austria.

