
SOUNDLIB: A MUSIC LIBRARY FOR A NOVICE JAVA PROGRAMMER

Viera K. Proulx
College of Computer and Information Science
Northeastern University
Boston, MA 02115
617-373-2225
vkp@ccs.neu.edu

ABSTRACT

 We describe the design, pedagogy, and student’s experiences with a
library that allows a novice Java programmer to design sound and musical
accompaniment for interactive graphics-based games, as well as explore the
programming of simple musical compositions, sound recordings, or visual
representations of music and sound. The library has been used for three semesters in our
classes and is publicly available at our website.

We wish to highlight two aspects of the library. First, the library explicitly
supports our test-first design approach to teaching object-oriented programming. Second,
the context of musical sounds: notes, pitches, duration, instruments, how they create a
melody, how they can be represented in a number of different ways, presents a unique
design playground for practicing class-based design.

INTRODUCTION

 Introductory programming is hard to teach. Our goal is to give the student an
opportunity to design a class-based system of non-trivial complexity, yet simple enough
to be manageable with only the basic programming skills the student has mastered. To
support this type of design exploration we have used for a number of years libraries
(named draw with variants idraw and adraw) that create a Canvas for simple drawing
of shapes, and a World class that handles time events and key events (the View and the
Control), with students designing the game behavior (the Model). Student’s game code
extends the World class by providing the onKeyEvent, onTick and draw methods and
it starts the game play by invoking the bigBang method.

Our curriculum enforces test-first design. Students are taught to design unit tests for
every method as soon as its signature and purpose are defined. The programming of the
game behavior supports this pedagogy. Students can define tests that check whether the
state of the world after a key event or a timer tick corresponds to the expected one.

This simple environment for designing complex games has served us well for a
while, but then it began to lose its lustre. In our first course students use a series of
functional languages with similar game libraries. (Indeed, these libraries have served as
models for our Java libraries.) As the supporting software and the first course evolved,
the games became more complex, the game libraries added sophisticated image

manipulation as well as a support for programming distributed client-server based games.
Coming into the second course that introduces class-based design in object-oriented
language (Java) the excitement for designing games with just a simple graphics waned.
The first game, designed in a mutation-free sub-language of Java was still a challenge.
When asked to design yet another game in a mutable style students would recycle old
games and retrofit them into the new style adding little to their class design repertoire.

Inspired by the work of Erich Neuwirth who uses programmatic music

composition (in a mini language for spreadsheets, and in Logo) for introducing computer
science concepts to beginners, we designed a sound library for Java. This library provides
fresh design opportunities, challenges, and possibilities --- very different from those the
students have already seen. Additionally, the design of the library itself includes several
interesting case studies in class-based design that we plan to leverage in our course.

 We present this tool and our experiences with it as follows. The next section
describes the design considerations for both the tunes package and the isworld package
and highlights the key features, including a deliberate design for testability. We then
illustrate the use of the library through our demo program, as well as through several
student projects, and conclude with acknowledgements.

LIBRARY DESIGN

 The SoundLib library consists of the tunes and the isworld packages. The tunes
package implements the music/sound component and allows the programmer to com-
pose programmatically musical sequences (melodies, sounds) and play them. The isdraw
package extends the functionality of the original imperative idraw library by allowing the
programmer to play notes and other sounds on each tick or in response to a specific key
event. It also adds the methods for responding to mouse events.

The tunes package: Building the orchestra

 The tunes package defines a MusicBox class that initializes a MIDI Synthesizer
with the default Soundbank and defines the initial MIDI program change selecting 16
instruments that provide a variety of options for the student. There are methods that allow
the programmer to see what is the current MIDI program (assignment of instruments to
channels) and that allow the programmer to change the instrument assignments (the MIDI
program). Additional methods allow the programmer to start and stop playing one or
more Tunes, where a Tune represents a channel choice and a Chord (a collection of
Notes to be played or stopped). A simple sleepSome method that allows the given time
to pass before resuming completes this class. The programmer can play tunes by starting
and stopping a sequence of tunes with pauses in between.

 To make the MIDI musical notation accessible to the programmer and to allow
students with minimal musical background to use the library, the interface
SoundConstants defines names for all MIDI instruments (e.g. PIANO, TUBA, or
BIRDTWEET), provides simple names to represent the notes in the middle of the piano

keyboard e.g. noteC, or noteDownG), and contains a mapping of MIDI instrument
numbers to their names. This makes it possible to define a Tune as simply as:

Tune pianoA = new Tune(PIANO, new Note(NoteA));

 Once a synthesizer has been initialized and the assignment of the instruments to
the sixteen MIDI channel has been completed, the tunes to be played need to specify only
the note and the instrument on which the note should play.

When designing a musical component for a game, all that student needs to do is to
decide which notes or tunes should be played on each tick, or in response to the key
event. Adding the chosen notes or tunes to the appropriate TuneBucket plays the
selected melody. We carry the tunes in a bucket, so even the most musically challenged
programmer could carry a tune :).

The Note class allows the programmer to define any of the 128 MIDI pitches

with a selected duration in a number of different ways. The class is designed to accept a
number of different formats for defining the note, supporting different types of users in a
comprehensive manner. The programmer can specify just the pitch. The default duration
is one tick. Of course, students may not want to remember that 60 represents the middle
C, and so the note names defined in the SoundConstants interface provide an easy way
out. So, the middle C note of duration 1 may be defined in any of the following ways:

Note midC = new Note(60);
Note midC = new Note(noteC);
Note midC = new Note(60, 1);
Note midC = new Note(noteC, 1);
Note midC = new Note("C4n1");

The last variant uses a String representation of the note, given by the note name

C, the octave 4, the modifier (one of n natural, s sharp, or f flat), and duration (1 tick).
The design of the constructors in this class provides a case study for designing classes for
user’s convenience and for assuring data integrity. The class provides additional methods:
nextBeat and skipBeat that either decrease or increase the note duration. These
methods are used when a note is playing for the duration of several beats.

A Chord is a collection of Notes that are to be played at the same time. It can be

initialized in a constructor to a given sequence of Notes, or ints (pitches) or Strings
(note names). It can also be modified later by adding notes to the chord. This class also
includes the methods nextBeat and skipBeat that either decrease or increase the note
duration for all notes in the Chord. But here we come with an interesting challenge.
When the programmer decides that a given Chord should be played by adding it to the
TuneBucket, she does not expect the Chord to change as the program plays the tune.
So, we need to make a deep copy of the Chord before it starts playing, to assure that the
mutation of the state as we progress through the beats has no ill effects. This provides a
nice example for learning about the meaning of deep copy and illustrating the need for it.

The class Tune represents a chord that is to be played on the selected instrument.
Each tune specifies the instrument number from the MIDI program and the Chord that
should play. The class TuneBucket then contains 16 Tunes, one for each of the 16
instruments in the current MIDI program. The programmer can add to the TuneBucket
one note, one Chord, a Tune, a collection of Tunes, and also clear the contents of the
TuneBucket that stops playing all notes and removes all Tunes from the TuneBucket.
The methods nextBeat and skipBeat work in the same way as for a single Chord.

To represent a melody, student starts with a sequence of notes. For example, the

sequence of notes (noteC,0,noteD,0,noteE,0,noteC,0) represents the first
phrase of the Frere Jacques tune. The pitch 0 represents a silent note, a pause. The next
note to be played can be generated by a circular iterator, creating an infinite melody loop.
We can combine two traversals over the melody with the appropriate delay in the second
traversal to play a musical canon or we can play several instruments in parallel as an
orchestra would do.

The isworld package: Making games

 The isdraw library provides a Canvas for drawing simple shapes (rectangles,
lines, circles, disks, and text) in any color and size. It defines an abstract class World that
handles the creation of the frame with the Canvas, the drawing of the representation of
the current world scene, the handling of the timer events, the key events, and mouse
events. The programmer designs a class that extends the World and implements the
methods that produce the changes in the World in response to the clock tick (onTick
method), in response to a key press and release (onKeyEvent, onKeyReleased), and a
method that draws the current state of the World. Optionally, the programmer can
override the stubs of methods that respond to mouse events.

 To start playing a tune at a given time, the onTick method includes a command
that adds the selected Tunes to the tickTunes TuneBucket. The selected notes will
play on the given instrument with duration measured in clock ticks. The Tunes added to
the keyTunes TuneBucket play as long as the key is held down, regardless of the given
duration. The onKeyReleased method does not affect the notes played --- it is provided
so the programmer can take other actions when the key is released.

Testing support

 The SoundLib library has been deliberately designed to support the test-first
pedagogy. Every class in the tunes and isworld packages comes with methods that allow
the programmer to check the effects or outcomes of methods defined in that class. The
MusicBox class allows the programmer to check the current channel assignments to
instruments (getProgram(int channel) method), and to check which tunes are
currently playing provided by the nowPlaying method. The Note class includes a
method sameNote that checks whether this note represents the same note as the given
note. It verifies that the notes have matching pitch and duration (for example, the two
notes represented by the Strings "G4s2” and "A4f2” are considered the same). The

Tune class and the Chord class both allow us to check their size, and whether they
contain the given Note. The TuneBucket class allows us to check whether it contains a
given note played on the given instrument, and it reports the size of the TuneBucket.

THE DEMO PROGRAM AND STUDENT PROJECTS

To illustrate some of the ways the library can be used, and to help the students to
understand how to program music we have designed a demo program. The goal is to
show the multiple ways of how the musical ideas can be represented, and how the user
can observe and control the music that is played.

The right panel shows the current MIDI program: the assignment of instruments
to the 16 MIDI channels. The user can choose any one of the instruments via mouse
click. This way the students can hear how the different instruments sound. The displayed
keyboard on the top left provides a guide to the user who wants to play a piano. The
labels on the keys show the note that is played and the key press that plays the note. The
note that is currently played is highlighted. The bottom left panel shows a piano roll. The
musical staff shows the notes that will be played on each tick. The arrow keys stop,
pause, reverse, and stop the playing of the selected tune. As the piano roll plays, the
currently played notes are shown in red.

Student experiences and what they taught us

 The first time we used the library we had no duration for the notes, no chords, and
the instrument-note request had to be added to the TuneBucket one at a time. Yet
students came up with truly engaging jazzy tunes, using silence between the notes to
create the right timing. Before the second semester we improved the design with note
duration and a more complex structures for creating musical compositions (almost
everything described here except the mouse interactions and key press duration).
The final projects during the second semester were quite creative. In the frogger game a
jazzy tune plays in the background, each collision and when the frog reached the other

bank of the river produces sound effects, and a great final tune plays when the game ends.
A memory game asked the player to remember the sequence of square choices and music
that went with it. One student sonified the Game of Life. Another project was a tool for
composing music with playback (see below). The user could select one of four
instruments, and pick the pitch to play at the given time on a graphical board that
resembled the piano roll: the vertical dimension represented the pitch, the horizontal
direction represented the timeline. Pressing the start key played the composition
representing the current time by a thin horizontal line. This project made it clear that we
need to add mouse events to the library, as all pitch selections were done by just moving
the cursor using the arrow keys.

 Another student tried to capture the melody played by playing the keys like a
piano keyboard and playing it back on demand. His project motivated the re-design of the
way the key press and release is handled in the current version of the library. Overall, the
complexity and creativity exhibited in student projects confirmed the expected benefits of
providing this library.

ACKNOWLEDGMENTS

The author would like to thank Erich Neuwirth for his inspiration and
encouragement of exploration of programmatically generated music. His work on using
music with spreadsheets and Logo have influenced the library design and its pedagogy.

REFERENCES

[1] http://www.ccs.neu.edu/javalib/SoundLib.
[2] Neuwirth, E., http://sunsite.univie.ac.at/musicfun/MidiCSD/.
[3] Proulx, V.K.., Test-Driven Design for Introductory OO Programming, SIGCSE

Bulletin, 41(1), 2009.
[4] Sendova, E. (2001) Modelling Creative Processes in Abstract Art and Music,

Eurologo 2001, Proceedings of the 8th European Logo Conference 21-25 August,
Linz, Austria.

