
Exploring Martian Planetary Images
C++ Exercises for CS1
Harriet J. Fell and Viera K. Proulx

Northeastern University
College of Computer Science

Boston, MA 02115, USA

fell@ccs.neu.edu, vkp@ccs.neu.edu

Abstract

We present a series of programming exercises based on
photographic images of Mars collected by the NASA
Viking Orbiter. Even without the news that there may
once have been life on Mars [1], we feel that these exercises
provide an exciting platform for exploring machine
representation of data, presentation of data, and methods of
storing and extracting data from files. All exercises are on
the level easily mastered in the first programming course.

Introduction

The files used in these exercises have been downloaded via
the Internet from the NASA depository. They contain
original unenhanced grayscale image data preceded by a label
identifying the image and a histogram of the grayscale
values of this image. By working with real data files
students appreciate why it is important to understand data
formats, file organization, file manipulation, and different
conversion methods. At the same time they learn about
simple image enhancement, encoding, and image
exploration via sound. In addition, two of the exercises
include require students to create a written document
relevant to the topic.

From a single file that appears to be just a long list of
bytes, students can:

 __

Partial support for this work has been provided by the
National Science Foundation Leadership in Laboratory
Development , award #DUE- 9650552

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’97.

Copyright 1997 ACM 1-58113-499-1/97/0006…$5.00.

• Convert the header bytes into a text file that includes
information such as:

 MAP_PROJECTION_TYPE = SINUSOIDAL

 MAP_RESOLUTION = 256<PIXEL/DEG>

 MAP_SCALE = 0.231352<KM/PIXEL>

 MAXIMUM_LATITUDE = 67.50000

 MINIMUM_LATITUDE = 62.50000

 MAXIMUM_LONGITUDE = 10.00000

 MINIMUM_LONGITUDE = -0.01627.

• Convert 4-byte records representing VAX-style integers
into a histogram of grayscale values.

• Convert records of bytes into lines of a grayscale image
of a region on Mars!

• Use the histogram information to perform two kinds of
image enhancement.

• Write a routine that converts the image data to sound -
music from Mars?

• Learn about covert channels and discover a hidden
message in the graphic image. (Yes we tamper with
the files to make this possible.)

Students can also go straight to the NASA Web site [3] to
explore additional images from the Viking Orbiter.

Description of Exercises

The exercises in this suite can be assigned as independent
programming projects (open labs) or used in a closed lab
setting. They are presented in the order in which they may
appear in a first year programming course. For each
exercise we identify its prerequisites, the new concepts
practiced in this exercise, and computer science ideas and
applications that add breadth to the assignment.

Our version of these labs uses the Metrowerks CodeWarrior
C++ environment for the Macintosh. It is a relatively easy
task to adapt them to other platforms. Students need to be
provided with software or instructions that allows them to

• set one pixel of a drawing to a specified grayscale
shade
• read a file (one byte at a time)
• produce a sound, given the amplitude, frequency, and
duration
• manipulate bits

Simple Image Enhancement.

Students display an image of Mars by reading and
interpreting an original NASA data file. They then use
scaling (a persistent theme in our course) to make the
planetary features more distinguishable[2, Tech Note 2].

Prerequisite concepts:
• assignment statements and simple arithmetic
• basic loops and decision statements

Goal:
• practice loops, decision statements, assignment
statements
• design and implement simple algorithm (minimum
and maximum)
• learn to read data from a file
• learn about images composed of grayscale pixels
• implement and observe the results of a simple image
enhancement algorithm

Activities:

Students are asked to write a program that will read the
image data and display the image one pixel at a time.

• The first task is to read and discard the label and histogram
portion of the file using a simple loop.

• Next task is to read the rest of the file one byte at a time,
converting each unsigned byte into an integer that can be
used to define the grayscale shade. Alternatively, if students
are familiar with arrays or strings, they may process one
line at a time. No additional internal storage is needed.
Each pixel (or each line) is displayed before the next file
read.

• Students then add code to find the maximum and
minimum values of the grayscale shade during the first pass
through the file (whether or not the data is displayed).

• Finally, students read the file again, but now the value of
each grayscale shade is modified using a simple linear

transformation. The image features become more visible
(Figure 1, 2).

Figure 1. Original Image
showing 200 x 200 pixels

Figure 2. Enhanced Using Transformation
shade = (shade - min) *(256/ (max-min))

Notes:

• Students are given the length of the label field and the
width and height of the image in pixels.

• Depending on student's abilities and time constraints,
students may be given shell program that contains
functions that perform the conversion from an unsigned

byte to an integer, or functions that simplify opening and
reading the file.

Data Conversion
Advanced Image Processing

Students implement a histogram equalization algorithm for
image enhancement. They see that by using simple array
manipulation, they can produce amazing detailed images
(Figure 3) from the original data[2, Tech Note 2].

Figure 3. Histogam Equalization Enhancement

Prerequisite concepts:
• arithmetic, loops, decisions
• file reading
• one dimensional arrays

Goals:
• practice array traversals and simple array manipulation
• learn to display array values as a bar graph
• learn about representations of integers in binary and
conversions between them
• implement and observe the results of advanced image
enhancement algorithm
• practice written presentation techniques

Activities:

• Students are asked to write a program that will first read
the histogram data from the file into an array of size 256.
For each grayscale shade the histogram records the number
of pixels of this shade. This data is stored as a series of

VAX longword integers. Depending on the platform used,
students may need to write a function that converts these
integers into the format used by their computer.

• Next, students display the histogram data as a bar chart.

• Students then implement the algorithm for histogram
equalization method of image enhancement. Histogram
equalization is simply a transformation of the original
distribution of pixels such that the resulting histogram is
more evenly distributed from black to white (Figure 3).
Students need to compute the scale factor s i that is used to
scale the shade of each pixel. The shade of each pixel
initially at gray level i is multiplied by a scale factor s i
computed as:
 s i = (1/n) * sum(n0, n1, n2, ..., ni)
 where n is the total number of pixels and ni is the number
of pixels at gray level i.

• To include more array manipulation in this exercise,
students may compute their own histogram rather than
reading the data from the file. Or they may be asked to
compute the histogram of the enhanced image and display it
at the end. This helps students to understand the effects of
histogram equalization.

• Finally, students are asked to create a document (using
word processor or HTML) that explains an illustrates how
the different images were created and how the two image
enhancement algorithms work.

Text and String Processing

Students read and process information in the label portions
of the original data files. They see the need for
understanding the details of string manipulation, data
representation, and data conversion.

Prerequisite concepts:
• loops
• file reading

Goals:
• learn about ASCII representation of characters
• create and write to a text file
• search a byte stream for a given character string
• convert numbers represented in ASCII characters to
integers or floating point numbers
• implement and observe the results of advanced image
enhancement algorithm
• practice written presentation techniques

Activities:

• Students are asked to write a program that will read the
ASCII label of the data file and write the results to a text
file. The bytes of the label may be read, one at a time, into
an unsigned char variable and written directly to the output
text file*. Students may start with a sample data file with
known label size and simply process the necessary number
of bytes. They should then read (and possibly print) the file
they create with a text editor. They could be asked to report
on specific information found in the file. They can use the
latitude and longitude information to attach their images to
those of other students.

• Once students have succeeded in creating and writing to a
text file, they should modify their read loop to terminate
when the characters "END_" are encountered. The label part
of the files all terminate with this string though the string
"END" appears at the end of each block of information.
Now they can read arbitrary data files.

• The labels of the files we work with all start like this:
CCSD3ZF0000100000001NJPL3IF0PDS200000001

= SFDU_LABEL
/* FILE FORMAT AND LENGTH */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1184
FILE_RECORDS = 1283
LABEL_RECORDS = 2
/* POINTERS TO START RECORDS OF

OBJECTS IN FILE */
^IMAGE_HISTOGRAM = 3
^IMAGE = 4

The RECORD_TYPE is always FIXED_LENGTH. To
process the images in arbitrary files automatically, the
students must retrieve the:

RECORD_BYTES, up to four digits telling the record
length in bytes.

FILE_RECORDS, up to four digits telling the total
number of records contained in the file.

^IMAGE_HISTOGRAM, up to two digits telling the
starting record of the Image Histogram Object.

^IMAGE, up to two digits telling the starting record of
the Image Object (data).

Students may be asked to search for keyword strings like
"RECORD_BYTES" and then to convert the numeric
information following the "=" into an integer.
Alternatively, they may use the fact that the label has a
standard format and search for the second, third, fifth, and
sixth "=" as these are followed by the numbers they need.

• Students should now improve their programs so that they
can open arbitrary image data files, automatically find the

dimensions and starting place of the image data, and display
the graphic image.

Note:

• The header files are all in a standard format that is
described in the NASA document [4].

Sonification, or Sound Analysis of Data

Sound, as well as graphics, can help in visualizing data [2,
Tech Note 10]. Students write a program to produce sound
output related to the grayscale of the pixel the mouse is
passing over. Though this exercise is unlikely to divulge
any new features in the Martian landscape, it does show
students how to produce sound and how to work with
mouse input.

Prerequisite concepts:
• arithmetic, loops, decisions
• a working program that produces Mars images

Goals:
• learn to read the mouse position
• use the mouse button to control a loop
• learn to retrieve the grayscale (or RGB) value at a
pixel
• open one or more sound channels
• produce controlled sound output

Activities:

• Students are asked to write a program that plays "music"
created from the image grayscale values. The music is
generated as long as the mouse button is down using the
grayscale of the pixel under the cursor.

Note::

• Students are supplied with a SoundChannel class that
includes a constructor, a destructor, and the member
function:

void Play (short amplitude, short
duration, long midiNote) - where

0 ≤ amplitude ≤ 255 controls the
volume,

duration is in half milliseconds, duration
= 2000 lasts one second.

0 ≤ midiNote ≤ 127 is the MIDI note number,
60 = middle C.

They get to use and see the implementation of a simple
class in preparation for writing their own classes.

• They are also given a function to read the mouse position:
void GetMouse(short&x, short& y).

Bit Manipulation, Covert Channel Encryption
Students extract a personal message (from Mars ?) from
their own (somewhat corrupted) image data file.

Prerequisite concepts:
• arithmetic, loops, decisions
• file reading and writing
• bit manipulation

Goals:
• practice bit manipulation
• practice file reading and writing
• implement and use covert channel encryption
algorithm
• explore social issues in computing related to
encryption

Activities:

• Students read an image file that contains a hidden message
encoded in the last bits of each image byte data. They write
a program that extracts these bits, composing them into
eight bit ASCII bytes and stores the results in a text file.
Students can now print the encoded message or write a
program that reads and displays the file as text.

• Students are asked to do a little research or reading on
covert channel encryption and write a short essay about its
dangers and advantages.

Note:

• The instructor has to encrypt the message, preferably
creating several files so not all students receive the same
message. The messages should contain a substantial
amount of text so that students need to save results to a
file.

• Students may be asked to display the image, to see that
the image quality has not been compromised by the
encryption and the fact that the image contains covert
message is very difficult to detect (Figure 4).

Where to Find the Files

The Viking Orbiter and other planetary data files can be
found at

ftp://pdsimage.wr.usgs.gov/cdroms/.
We suggest using the files in vo_2002 that start with
"mg". For example:

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/mg25sxxx/
mg25s022.img.

These files are relatively small, about 100K and contain
images that are approximately 300 by 300 pixels. See

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/volinfo.txt
for a description of the file format.

Acknowledgments

The inspiration for the first assignment came from reading
the book “Visualization of Natural Phenomena” and was
motivated by the fact that quite simple algorithms for
image enhancement generated images of strikingly better
quality. The image data files have been downloaded from
the NASA depository (CREDITS). The fact that all data
files start with plain text labels describing the file contents
motivated the next three exercises. Erich Neuwirth
suggested the fourth exercise that illustrates the use of a
covert channel for encryption.

References

1. Chandler, David L., "Mars meteorite may hold evidence
of microscopic life", The Boston Globe, August 7,
1996.

2. Wolff, Robert S. and Yaeger, Larry, Visualization of
Natural Phenomena, Springer-Verlag, New York,
1993.

3. NASA Image web/ftp Site
 ftp://pdsimage.wr.usgs.gov/cdroms/
4. NASA Volume Information:
 tp://pdsimage.wr.usgs.gov/cdroms/vo_2002/volinfo.txt

