
Java IO and Testing Made Simple

Viera K. Proulx
College of Computer and Information Science

Northeastern University
Boston, MA

vkp@ccs.neu.edu

Richard Rasala
College of Computer and Information Science

Northeastern University
Boston, MA

rasala@ccs.neu.edu

ABSTRACT
We present software tools that support robust input pro-
cessing and comprehensive testing in Java. The software
includes the JPT library that supports error-checked typed
input via console or GUI for all primitive types. This pro-
vides a robust encapsulation of typical interactive input re-
quests encountered in introductory programming courses.

The Java Power Framework and its extension allow the
user to develop a comprehensive test suite independent of
the target classes. The type-safe input framework allows
us to implement an external iterator interface for several
types of input data sources, including the console, a GUI,
a file, and an internal data structure. Student’s programs
that implement various algorithms can then process data
independently of its source: running tests on existing data
structures; creating inputs interactively; or running stress
tests and timing tests on large input files.

Categories and Subject Descriptors
D.1.5 [Software]: Programming Techniques; D.2.10 [Design]:
Methodologies; D.2.3 [Coding tools and techniques]: Ob-
ject oriented programming

General Terms
CS 1/2, Object-oriented Issues, Curriculum Issues, Course-
ware

Keywords
Languages, Design, Algorithms

1. INTRODUCTION
Java programmers, especially novices, face numerous ob-

stacles when trying to write programs that interact with the
user. The patchwork of partial solutions is cumbersome to
use, provides model of bad practice that students learn to
accept and emulate, and does not scale to real applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04,March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

We focus on three fundamental problems: the processing
of interactive user input from the keyboard; the support for
building test suites for complex class based programs; and
the handling of the input from a file and output to a file at
the proper level of abstraction.

In introductory courses the code that handles the user in-
teractions is an order of magnitude more complicated than
the code that focuses on the key concepts. Even the input of
numeric values requires parsing of the input string and es-
tablishing a protocol for dealing with errors. To process the
input of a collection of values that comprise the data needed
to construct an object becomes a nightmare if appropriate
abstractions are not in place. Some environments [7, 3, 16,
17] provide a solution in the form of GUIs, but these cannot
be used outside of these environments.

Another problem related to user interactions is the sup-
port for developing test suites for class based programs.
Some IDEs tried to address this problems by providing ob-
ject viewers and a framework for interactive method invo-
cation [17, 18]. It encourages students to interact with ob-
jects, but does not allow for saving the complete test suite
for later use. Alternately, the test suite is built with JUnit
[9] - a complex environment that students have to learn to
use in addition to the overwhelming complexity of the Java
language itself.

The third problem overlooked in most introductory texts
and courses is a systematic use of files as sources and de-
positories of test data. Students write programs that either
deal with an existing internal data structure or use only file
input as the source of data. Producing output is similarly
restricted. Ideally, programs that implement typical algo-
rithms in the introductory courses should work with a data
structure that can be initialized in an arbitrary manner:
through input from a console or a GUI, from a file, or from
an existing internal structure. This allows for testing for
errors in the context of small data sets, and for stress test-
ing of the same program on large data sets, without making
any modifications in the program. It is also desirable that
the resulting data set be deposited in a file, saved as an in-
ternal data structure, or displayed in an arbitrary manner,
without the need for modifying the code for the underlying
algorithms.

We believe that these three problems are intimately con-
nected and can be solved with the same set of tools and
techniques. We present such tools and techniques in this
paper. At the core of these tools and techniques is the Java
Power Tools (JPT) package [14]. JPT includes support for
typed input for all primitive types through either a con-

sole or a GUI text field, with a comprehensive error strat-
egy in place. This provides the appropriate infrastructure
for building higher-level abstractions for input processing.
While the implementation presented in this paper is Java
based, the concepts are applicable to other object-oriented
languages, such as Squeak or C#.

The first section discusses the design of the JPT input
processing and the error strategy and shows how it can be
used to implement higher level abstractions for interactive
input of all data needed to define a new object.

The second section presents the Java Power Framework
(JPF), a tool for rapid prototyping and systematic develop-
ment of test suites for class based programs.

The next section presents the algorithmic abstraction that
provides the programmer with a unified view of the input,
regardless of whether the source of data is a file, interac-
tive user input from a console or a GUI, or the contents
of an existing internal data structure without requiring any
change in the program. Output is handled at a similar level
of abstraction.

The last sections compare our results with existing work
and reflect on our experiences with using these tools in our
courses.

2. JPT SUPPORT FOR TYPE-SAFE INPUT
Most higher-level programming languages provide only a

limited support for processing the input of numerical data
from the keyboard. While is possible and desirable to intro-
duce programming without the use of explicit input[4, 5],
the problem cannot be avoided forever. When writing pro-
grams that interact with the user through keyboard-based
input, Java programmers, especially novices, face numerous
obstacles. The input string needs to be processed, parsed,
and cast to the appropriate data type. Dealing with errors
compounds the complexity of the task. If the programmer
wants to initialize an object with several data items speci-
fied by the user input, the task becomes even more complex.
We first describe how JPT supports type safe input of Java
primitive data, then show how the JPT tools can be used
to implement type safe input of all data items needed to
instantiate a new object.

2.1 Input of Primitive Types.
Keyboard input from the user is entered either into the

console, or into a text field in a GUI. JPT supports its own
console for user interactions, separate from the System con-
sole and has a TextFieldView class that implements a GUI
text field with additional functionality.

To process input entered as a String and representing
data of any of the primitive types, the JPT library includes
a parser that determines whether an input string represents
a valid value of the specified type. The user may type in
numbers in any of the valid formats, or as an arithmetic
expression that may contain a number of standard functions
available in the Java math library, such as sin, sqrt, abs,
etc. Similarly, a boolean value may be entered as any valid
expression that evaluates to a boolean value.

The classes console.in and the TextFieldView both con-
tain methods of the form demandType , one for each primitive
type. These methods parse the input and if the data can-
not be interpreted as a valid value for the specified type, the
user is prompted to supply correct input. In the console, the
error prompt is textual; for the TextFieldView the program

generates a modal dialog that persists until a valid string
is typed in. The class TextFieldView also contains similar
methods of the form requestType , that give the user the
option to cancel the input. In that case the method throws
an exception. The user can abort input from the console,
if the programmer uses the reading method. This method
returns the value of the desired type as the method argu-
ment (cast as a mutable object that represents the value
of the primitive type) and returns a boolean value true if
the user supplied valid input. If the input is invalid, the
user is prompted to resubmit the input. If the user hits re-
turn without any input, the method returns a boolean value
false, indicating the end of the user’s input.

Student code is then simple and robust at the same time:

int x = console.in.demandInt("Next:");

or

int x;

try

{x = xTextFieldView.requestInt();}

catch(CancelledException e)

{System.out.println("No More Input");}

The optional String argument to the demandType meth-
ods for the console is displayed as a prompt to the user.

2.2 Input of Compound Data
Typical Java programs use objects that require several

different data fields for their constructors. If this data is
provided by the user either through the console or through
a text field in a GUI, the code for processing the input be-
comes even more cumbersome. Furthermore, without proper
encapsulation it is difficult to test the program on existing
data and run the same code without change with input from
the keyboard.

From the programmer perspective, the interaction with
the user input should look the same as if the input was ex-
tracted from existing internal data model. At the time when
a program needs the data for the next object, it should just
request that a new instance be created. The fact that the
user types on a keyboard or performs mouse manipulations
is irrelevant.

Using the JPT input processing tools, it is possible to
write a helper method for each class that collects inputs
for several fields of an object (e.g. name, age, eye color)
and invokes a constructor that delivers an instance of the
desired class. The source of the input can be either the con-
sole or a collection of GUI fields, or a combination of these.
GUI fields may include options selection, check boxes, color
views, sliders, or menu choices as well. A helper method for
input of a Person object may have the header:

Person demandPerson(String prompt);

or

Person requestPerson(String prompt)

throws CancelledException;

The method demandPerson can then be implemented as
follows:

Person demandPerson(String prompt){

console.out.println(prompt);

return new Person(

console.in.demandString("Name:"),

console.in.demandInt("Age:"),

console.in.demandColor("Eye Color:"));

}

While this approach does not support formatted input
of several data fields on one line, it works very well in the
learning environments and eliminates the complications of
input processing. Furthermore, students have a model of
well designed input processing and are free to ”look under
the hood” and learn how such a robust system is imple-
mented.

3. JAVA POWER FRAMEWORK (JPF) FOR
BUILDING TEST SUITES

A typical student program may contain a number of classes
and interfaces that interact with each other either through
containment or a union. For example, a program that sorts
lists of books and authors by different attributes may include
the following classes: Book, Author, BookList, EmptyBkList,
ConsBkList, EmptyAuthList, ConsAuthList, comparators:
ByTitle, ByAuthor, ByPrice. It is clear that the code that
creates the lists of books and authors and invokes the sorting
does not belong to any of these classes. The user of these
classes is some external class. Therefore, the code that tests
this class hierarchy should also be logically separated from
the target code.

For production purposes one should build a test suite that
runs a comprehensive set of tests for all constructors and
methods in the class without any interaction with the user.
However, at the time when students are developing the class
hierarchy, it may be preferred that they can see and run the
test for each method or a constructor independently of the
rest.

JPF provides the environment for either of these options.
The Java Power Framework and its extension JPFalt creates
an environment for running and testing of Java programs.
The user’s program consists of all classes in the program to
be tested, together with one class that holds the test suite.

In the test class the programmer instantiates sample ob-
jects for the target program and encapsulates in separate
methods the code for each different set of tests. Running
of the JPF program then opens a JPT console, and creates
a simple GUI with a list of action buttons - one for each
method in the test class that requires no arguments and re-
turns void. A programmer can perform the desired tests
in an arbitrary sequence by selecting the appropriate action
button. Additionally, the JPF creates a graphics panel that
can be used for display of graphics and images, and for the
input of mouse events.

The JPF is built as follows. The TestSuite class contains
its public static void main method that constructs an
application that has this TestSuite instance as its member
data. The application uses the Java reflection classes to
build a GUI with a button for each method in the TestSuite
class that is not private, has no arguments and returns
void. In this manner, each method in the TestSuite class
can contain the test code for arbitrary use of classes in the
target class hierarchy. Additionally, instances of the classes

in the target hierarchy that are used in several tests can be
defined as member data in the TestSuite class.

Of course, the name of this class does not have to be
TestSuite - a change in the class name only needs to be
repeated in the comment line and in the argument to the
constructor for the application class, called in the public

static void main.
The application also builds a graphics panel that can

be used for graphics and for mouse interactions, and the
TestSuite class also has access to the JPT console. The
user can save the contents any part of the console interac-
tions, as a text file.

The code in the TestSuite class provides a comprehen-
sive view of all tests students ran, with proper documenta-
tion. The transcript from the console interactions provides
a record of the test outcomes.

Students insert the test code into the following skeleton
of the TestSuite class:

/* TestSuite.java */

public class TestSuite extends JPFAlt{

public static void main(String[] args){

new TestSuite();

}

/* Place to instantiate objects

in the target class */

...

/* Place for methods that test

the target class constructors and methods */

...

}

To emphasize proper test development for our students,
in JPFalt we augmented the original JPF with convenience
methods that allow for specifying the expected and actual
values as follows:

void testIsWithin(){

testHeader("isWithin");

Circle c = new Circle(0, 0, 10);

expected(true);

actual(c.isWithin(3, 4));

expected(false);

actual(c.isWithin(5, 12));

}

and producing the following output in the console:

Testing the method isWithin:

Expected: true

Actual: true

Expected: false

Actual: false

Each of the methods expected and actual is overloaded
to consume as argument a value of any of the primitive types,
or any Java Object. For Java Objects it uses the toString

method to generate a String representation of the object.
This feature is exploited in all programs our students write,
by requiring that each class contains a boilerplate implemen-
tation of the toString method modelled after the Felleisen

and Friedman [6]. In this way students can see the relevant
values of the objects they work with, either after the con-
struction, or after some mutation has been performed, or,
before some method is invoked.

4. LEVERAGING THE EXTERNAL ITER-
ATOR INTERFACE

The lack of comprehensive input-processing strategy also
means that students rarely use file input in a systematic
way. Textbooks for introductory courses in Algorithms and
Data Structures typically say very little about the use of file
input, or omit the issue altogether [2, 12, 15, 13, 19]. How-
ever, the only way students can understand the meaning of
algorithmic complexity and the need for stress tests for their
programs is to run their programs with realistic large data
sets that illustrate the concepts presented in a theoretical
framework.

We developed a clean way of encapsulating the processing
of input data into a traversal of the data through an itera-
tor. This iterator is then implemented for arbitrary source
of data: the console, a GUI, an internal data structure, or
an external file. As a result, students write programs that
process data regardless of its origin. When developing the
program, students run tests on predefined sample data sets,
or interact with their programs through a GUI or the con-
sole input. Once they believe the program works correctly,
they perform stress tests using large files of data, without
changing their programs.

We replaced the Java Iterator interface, by our IRange

interface whose functionality matches the control structure
of a Java for loop:

interface IRange{

Object current();

void next();

boolean hasMore();

}

The main difference is that current() may deliver the
same object several times, while next() only advances the
iterator to reference the next item in the data set.

The method that uses the data set will have the following
structure:

Datatype useDataSet(IRange it){

// ... code to initialize the loop ...

for (it;

it.hasMore();

it.next()){

... it.current() ...

}

// ... code to clean up ---

// and return the result ...

}

It can then be invoked as follows, using either data from
an internal structure, from the console, or from some given
file:

Dataset ds1 = useDataSet(new MyDataRange(adataset));

Dataset ds2 = useDataSet(new MyConsoleRange());

Dataset ds3 = useDataSet(new MyFileRange(fileinfo));

where the three classes MyDataRange, MyConsoleRange, and
MyFileRange implement the IRange interface for the three
different sources of data.

4.1 Iterator Implementation for File Input
Most of the work needed to read the data from a file is

done in two methods: the constructor and the method that
parses the input line and produces the data items needed to
instantiate the desired object.

For parsing a line of input that represents all data needed
to instantiate a Person object, we use a method with signa-
ture

Person fromStringData(String line);

that parses the input line, extracts the name, age, and eye
color data, and invokes the constructor to produce a new
Person object. This method may reside within the class
Person, or it may appear within the class that implements
IRange iterator for files in which each line of data represents
one Person object.

The constructor for the PersonFileRange is responsible
for opening the desired file, initializing a BufferedReader

and invoking the next() method to make sure a Person ob-
ject is available when the current() method is invoked. If
the constructor fails to construct a Person object for what-
ever reason, it sets internal state variables that in turn cause
the hasMore() method to return false.

The rest of the implementation is straightforward. The
method current() just delivers the available Person object.
The method next() invokes the fromStringData() method
on the next line of input, if it is available. Otherwise, it
signals the end of input though internal state variables.

4.2 Iterator Implementation for Console
The constructor for the console input must read the first

set of data to instantiate the desired object, even if it seems
to be ’out of place’. The reason is, that the loop cannot
proceed, if the hasMore() method returns false, and this
needs to be known at the beginning of the loop.

The reading of the data leverages the reading(Object o)

method for the console.in class to signal the end of input
whenever the user fails to supply additional data, and to
throw an IOException with a message "End of Input" to
prevent any further request for data items for this object.
The wrapper method that in turn asks for each data item
catches the exception to print the "End of Input" message.

The rest of the implementation is straightforward.
Input from a GUI, or even a combination of console and

GUI together is then done in a similar manner. The code
that implements the IRange iterator for various kinds of
input sources is itself a nice example for students to study
and adapt in new settings.

4.3 Pedagogical Considerations
The IRange iterator interface has been designed to match

the control structure of a Java for loop statement. In our
courses students first experience list processing in a purely
object oriented manner - through recursion that leverages
dynamic dispatch of method calls over the EmptyList and
ConsList subclasses of an abstract AList class. The tran-
sition to an external view of the elements of the list is an
easy one. They also understand that an iterator object ”self-
destructs” during the traversal. This sets the stage for sev-

eral lessons. First, it becomes clear, that the iterator object
is best instantiated at the beginning of the loop. The fact
that we may be processing the first request for data a bit
prematurely is of little consequence. A pedantic pedagogue
may explain the gory details, but for a novice programmer
this is of little consequence, and can be explained as a sim-
ple compromise that was made so that we can focus on more
important issues.

At this point students understand how the iterator is im-
plemented. We now introduce Java Array class, and use
the same iterators for the first traversal. Study of the im-
plementation of the IRange iterator for Array data set then
leads to the simplification of the traversal in the manner of
typical counted loop.

5. COMPARISON WITH OTHER WORK
Processing of the input has been a nemesis of the introduc-

tory courses for years. A recent discussion on the SIGCSE
mailing list produced no satisfactory solutions. A number of
attempts have been made to simplify the input processing,
whether from the keyboard or from a GUI, simpleIO [10]
and BreezyGUI [11] being two examples.

We mentioned earlier the environment designed to sim-
plify student’s interaction with Java programs. BlueJ [17] is
the most popular, others include MiniJava [16], a graphics
based environment from Williams College [3], and DrJava
[1]. They all provide only a partial solution to the problems
addressed in this paper.

There is no environment we know that integrates the sup-
port for systematic user interaction that includes perma-
nent record of the test suite, support for type safe input,
and support for seamless processing of file input and out-
put. We believe that the combination of the well designed
tools with well designed abstractions presented here provide
a solid foundation for introducing input processing to novice
programmers. A promising work in this direction is Profes-
sorJ [8] — a new set of Java-like languages implemented
within the DrScheme [7] environment.

6. EXPERIENCES IN THE CLASSROOM
We have used these tools and techniques in courses taught

both by the authors and by other instructors. Students
readily understood the environment of the TestSuite and
learned from the beginning to design and document tests
for all constructors and methods. The ability to add any
test, or some sample code to the existing test suite encour-
aged student’s exploration of available alternatives. For the
instructor it provided a clean record of student’s work.

The iterator interface for reading data sets from multiple
sources was used in timing trials on sorting algorithms ap-
plied to a set of cities with zip codes. Students first tested
their work on small internal data sets, then ran stress tests
and timing trials on files of up to 30000 entries. One imple-
mentation that was based on a recursively defined list failed
to complete the task when the file had about 30000 items.

Students learn from seeing and using abstractions that
provide tangible and significant benefits. Replacing seam-
lessly one data set with another without modifying their
program illustrates vividly the need for the separation of
the algorithm implementation from the data source. The
encapsulation of the input processing promotes proper de-
sign discipline of separating the model from the view.

7. ACKNOWLEDGMENTS
The first author would like to thank Matthias Felleisen for

helping her discover a new way to see and understand pro-
gramming and teaching. We also acknowledge the support
of the NSF CCLI-EMD DUE-9950829 Grant: Computer Sci-
ence Laboratory Projects: Breadth Through Depth.

8. REFERENCES
[1] E. Allen, R. Cartwright, and B. Stoller. Dr.Java: A

Lightweight pedagogic environment for Java. SIGCSE
Bulletin, 34(1):137–141, 2002.

[2] D. A. Bailey. Java Structures. McGraw Hill, 2 ed.,
2003.

[3] K. Bruce, A. Danyluk, and T. P. Murtagh. A library
to support a graphics-based object-first approach to
CS1. SIGCSE Bulletin, 33(1):6–10, 2001.

[4] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. How to Design Programs:An
Introduction to Programming and Computing. MIT
Press, 2001.

[5] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. Structure and interpretation of the
computer science curriculum. FDPE, 2002.

[6] M. Felleisen and D. Friedman. A Little Java A Few
Patterns. MIT Press, 1998.

[7] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of Functional Programming, 12(2):159–182,
March 2002. A preliminary version of this paper
appeared in PLILP 1997, LNCS volume 1292, pp.
369–388.

[8] K. E. Gray and M. Flatt. ProfessorJ: A gradual intro
to Java through language levels. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 2003.

[9] Junit framework http://www.junit.org.

[10] E. Koffman and U. Wolz. A simple package for gui-like
interactivity. SIGCSE Bulletin, 33(1):11–15, 2001.

[11] K. A. Lambert and M. Osborne. JAVA Complete
Course in Programming and Problem Solving.
South-Western Educational Publishing, 2000.

[12] Y. Langsam, M. Augenstein, and A. M. Tennenbaum.
Data Structures Using Java. Pearson
Education/Prentice Hall, 2003.

[13] D. S. Malik and P. S. Nair. Data Structures Using
Java. Thomson Course Technology, 2003.

[14] R. Rasala, J. Raab, and V. K. Proulx. Java Power
Tools: Model software for teaching object-oriented
design. SIGCSE Bulletin, 33(1):297–301, 2001.

[15] D. D. Reily. The Object of Data Abstraction and
Structures Using Java. Pearson Education/Addison
Wesley, 2003.

[16] E. Roberts. An overview of MiniJava. SIGCSE
Bulletin, 33(1):1–5, 2001.

[17] J. Rosenberg and M. Koelling. http://www.bluej.org.

[18] J. Rosenberg and M. Koelling. Objects first with Java
and BlueJ. SIGCSE Bulletin, 33(1):429, 2001.

[19] P. T. Tymann and G. M. Schneider. Modern Software
Development Using Java. Brooks/Cole, 2004.

