
Objects From the Beginning - With GUIs
Viera K. Proulx

College of Computer Science
Northeastern University

Boston, MA 02115
1-617-373-2225

vkp@ccs.neu.edu

Jeff Raab
College of Computer Science

Northeastern University
Boston, MA 02115
1-617-373-5876

jmr@ccs.neu.edu

Richard Rasala
College of Computer Science

Northeastern University
Boston, MA 02115
1-617-373-2206

rasala@ccs.neu.edu

ABSTRACT
We describe a way to introduce objects at the beginning of the
first CS course through the use of objects that have significant
nontrivial behavior and interactions with other objects. We
will describe four introductory laboratory projects and an
outline for introductory lectures on object oriented
programming that illustrate the need for private member data,
constructors and accessor member functions, and prepare
students for writing object oriented programs in Java with
graphical user interfaces.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects. H.5.2 [Information Interfaces
and Presentation]: User Interfaces – graphical user
interfaces. K.3.2 [Computers and Education]: Computer and
Information Science Education – Computer science education.

General Terms
Your general terms must be any of the following 16 designated
terms: Algorithms, Design, Human Factors, Languages.

Keywords
CS1, objects, GUIs.

1. INTRODUCTION
 Objects First! is a mantra for the first programming based

computer science course. The series of four laboratory
assignments presented in this paper introduces students to
classes and objects by providing a comprehensive interactive
GUI for exploring the member data state and the object
behavior in response to different actions, gradually
illustrating the most important concepts in object oriented
programming. The Java Power Tools [6,7] allow the
programmer to build a robust graphical user interface without
altering the nature of the actual Java program. As a result,
students can see complete working classes from the beginning
and explore the behavior of objects through a viewer that itself
is a subject of study.

The paper starts with our view of the skills and concepts that
students need to master to begin working with objects and
classes. We follow with a framework for class definitions for
students to follow. The four labs described in the subsequent
sections follow these principles. In the first lab students
explore object behavior without any concern for actual code.
In the next lab they observe the changes in the member data in
response to actions that invoke member function calls and
learn the syntax of such calls. In the third lab students read the
code for a complete program following a detailed tutorial. All
three labs have a creative component where students add some
design of their own and get prepared to write their own
segments of code. In the fourth lab students extend an existing
class by implementing a function that paints a scalable image
and use several such images to create a mosaic.

The use of GUIs is an integral part of these labs, both for
exploring the behavior of the objects of study and for
developing the mental model of the communication between
the objects and the views that represent some snapshot of the
internal state. The distinction between the internal state and
the external view helps motivate a number of issues, such as
the distinction between private and public member data and
functions, the need for preserving integrity of the object state,
and the techniques for assuring such integrity.

2. OTHER 'OBJECTS FIRST' WORK
Though Java and especially the Swing libraries provide
extensive support for building GUIs, such tasks are ill suited
for students in introductory courses without further
assistance. In addition, the support for text input in Java i s
minimal making even the simplest program difficult. There
have been numerous attempts to address these problems that
fall into two categories. The first category consists of small
toolkits that allow the students to perform simple IO. These
include breezyGUI [5], simpleIO and its GUI extension [4], and
the input processing functions in [2]. Students are limited to
interacting with objects in small snapshots at a time.

Others have built entirely separate environments for student
work, such as MiniJava [8], Graphics Library [1], and BlueJ [3].
In [1] students are restricted to working with graphics based
objects at first, limiting their view of how objects can be used.
In [8] students work with a (pedagogically sound) variation of
the Java language, but interact with objects mainly through a
console. The BlueJ environment [3] allows the user to
construct an object and inspect the behavior and data of that
object. Thus, BlueJ acts in some ways as an intelligent
debugger. None of these approaches encourages the use of
GUIs programmed in Java, the viewing of user-defined subsets
of the object state, or the use of algorithm animation. In all

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ITiCSE’02, June 24-26, 2002, Aarhus, Denmark.
Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00.

cases, students must eventually “graduate” to dealing with the
full mess of Java without any hints about how to use object-
oriented principles to encapsulate the complexities of
building a full scale program with a graphical user interface.

[3] presents guidelines for introducing objects first using
BlueJ, but argues against the use of GUIs. The thrust of the
argument there is that GUIs are idiosyncratic and time
consuming. This argument loses force if one has a toolkit
such as the Java Power Tools that leverages object-oriented
principles to dramatically reduce the effort needed to build a
GUI. If you can build a high quality GUI in an hour, then time
is no longer a big issue .

We believe that well designed GUIs can so enhance the student
experience that students will understand why the techniques
of object-oriented programming are powerful and worth
learning.

3. THE TEACHING STRATEGY
In learning object oriented programming in Java, there are
many different concepts, ideas, and skills that students must
master almost concurrently. Each of these skills presents a
different type of mental challenge. Students often get stuck
not knowing what is the real stumbling block in a particular
situation.

The key concepts, ideas, and skills that students need to grasp
before writing programs on their own are the following:

• create a mental model of what is a class and what is an
instance object of this class

• create a mental model of the class organization: the
member data and the member functions as well as the
information hiding aspects

• understand the organization of Java code: the statements,
brackets, parentheses, data declarations, method
declarations, etc.

• understand, in the context of Java, what is a type/class, an
instance of an object/variable, a value, and a reference

• learn the details of the syntax: member function calls, new
object creation, etc.

• understand the logistics of an algorithm that is needed to
perform a given action

• understand the encoding of algorithms as member
function definitions

• understand the encapsulations that classes provide:
o assuring integrity of member data
o hiding implementation details

o encapsulating complex tasks

The pedagogy should focus on one task at a time if at all
possible, giving students the time needed to get familiar with
new ways of thinking and organizing ideas not to mention
expressing them in a new language.

Once we start the discussion of the organization of a typical
class definition, it helps to formalize and explain the role of
the different constituents.

A Java class definition typically consists of several key parts.
The most important to the novice are the following:

• constants used to name default state information and
other helpful information

• member data that describe the state of an object instance

• constructors that are used to create a new instance of an
object in this class

• accessor member functions (set and get) that allow the
user to modify the state of an object instance in a manner
consistent with the class constraints

• action member functions that perform the tasks for which
the class has been designed

• helper functions (utility functions) that encapsulate
subtasks of accessors and action functions

This may look like a formidable list, but is quite manageable if
the first classes and objects presented use each of these
constituents in a meaningful way. The first four items are
mainly responsible for creating and maintaining the state of an
object instance. The action functions are the reason for
creating the class. The helper functions encapsulate the low-
level tasks and cannot be accessed from the outside of the
class. This division of a class into constituent parts helps
students to see the distinction between the class API (the part
that the caller of the class can see) and the internal
implementation of the class.

4. THE FIRST LECTURES
The first lectures should begin with scenarios that explain the
ideas of objects and algorithms using real world examples that
are familiar to students and easy to understand. An example
that may be used is a boom box. It consists of three major
objects, the radio, the tape player, and the CD player. These
objects share some behavior but also have individual features.
Moreover, the sound controls are independent of the music
source. No matter what is the source of the music, the same
controls are used for volume, speaker balance, treble, and bass.
In this example, we can talk about the fact that the user
interface (API) is similar for all boom box devices while the
internal implementation differs widely from manufacturer to
manufacturer. We also know that we do not need to understand
the implementation to be able to push the buttons and turn the
dials. As a thought exercise, students may be asked to describe
the functionality of a boom box device by specifying the
member data component objects and the member functions
needed for each of these objects.

5. THE FIRST FOUR LAB ASSUGNMENTS
The first labs introduce students to object-oriented

programming by starting with the observation of object
behavior and gradually increasing the exposure to program
syntax and structure.

Each of the four labs uses a GUI to provide an environment for
exploring objects and classes in a progressively greater detail.
In the first lab, students just observe the behavior of an object-
oriented program and learn what method invocation means. In
the second lab, students observe changes in the member data
of a turtle object in response to a method invocation. Students
create small drawings using the GUI to activate the appropriate
sequence of turtle methods. In the third lab students study the
Java source code, learn how to read text input from a GUI, and
learn how to display results. They also modify a small amount
of code and learn about the need for safeguarding the integrity
of input and member data. In the fourth lab, students extend a
class following a given pattern and write code that creates and
uses several objects to create interesting graphics images.

5.1 The First Lab: Picture Explorer
In the first lab, students need to get familiar with the particular
computer system, the compiler idiosyncrasies, and learn how
to extract information from a running program to write a lab
report. There is no time yet for thinking about algorithms and
program creation. However, this is a great time for introducing
the kind of thinking that needs to precede any programming.
Specifically, students are presented with an algorithmic
problem that they solve by doing computations on paper and
then verify by observing a program that uses their results.

In this lab, students work with a complete program with a full
graphical user interface that allows them to type in the name of
a gif image file and display the image in the graphics window.
The GUI allows the user to choose the location of the picture
and modify its width and height. The lab document describes
the GUI components and their behavior, explains the key
components of the Picture class, and describes a series of tasks
that reinforce the student's understanding of the program
behavior.

Students are asked to show an image in the top left corner of
the window, to find out its size by recording the displayed
member data information, then display the image in its
original size in the bottom right corner of the window, then
center it, and finally display it in some desired size. The
students perform the needed calculations on paper, record their
values into a lab report, and verify their computations by
observing the displayed images. They also paste snapshots of
their program screens into the lab report.

Although they work with the member data and member
functions of a Picture class, students are not required to read
the code for their lab work. However, once they experience the
behavior of a Picture object, this simple class makes a great
first example of the code to be presented in the classroom. For
example, we may show them how the action button Set
Location calls the member function setLocation, passing two int
arguments extracted from the two text field views named xTFV
and yTFV:

public void setLocation() {
 int left = xTFV.demandInt();
 int top = yTFV.demandInt();

 myPicture.setLocation(left, top);
}

5.2 The Second Lab: Turtle Explorer
In this lab, students again explore the behavior of an object
instance in a given class, however, now they observe the
current state of member data and see the syntax of the member
function calls. The object is a familiar Logo-like Turtle, and the
member functions mimic the typical Logo functions: step, turn,
showTurtle, hideTurtle, setPaint, penUp, penDown. Students add
again a bit of creative work by making the Turtle draw a simple
figure of their own design in the graphics window.

The GUI window has a display that shows in the left panel the
current state of the member data - displayed in fields that
cannot be modified by the user. This reinforces a student's
understanding that these data items are hidden from the
outside world.

The center panel has an action button for each member
function, together with user editable fields that supply the
arguments to these functions (as appropriate). If the student
modifies the color choice, for example, but does not click the
setPaint button, the color in the member data display stays at
its previous value.

Each time the student activates a member function button, the
actual member function call with its correct syntax i s
displayed in a separate console window and the Turtle
performs the desired action in the graphics panel. As an
example, we have reproduced the transcript from a simple
session that draws a square.

myTurtle.step(50.0);

myTurtle.turn(90.0);

Figure 1. Snapshot of Picture Explorer Application.

Figure 2. Snapshot of Turtle Explorer Window and

a Close-Up of the GUI.

myTurtle.setPaint(255, 0, 0);

myTurtle.step(50.0);

myTurtle.turn(90.0);

myTurtle.step(50.0);

myTurtle.turn(90.0);

myTurtle.step(50.0);

The student’s task is to explore the Turtle behavior,
experiment with simple drawings, to write down an algorithm
for creating several given drawings, and finally, to make their
own design.

To help with creating a drawing, the main application program
includes a draw button that calls a draw() member function.
Initially, this function is empty and nothing happens when the
button is pressed. To provide a definition of the draw()
member function, students may copy the transcript of their
drawing history from the console window and insert it into the
body of the draw() function in the application class. After the
next compilation, their work will be encapsulated as a
function.

In the rest of the lab exercise, students read the code of the
Turtle class and of the action functions that call the member
functions in the Turtle class. Thus they become familiar with
the syntax, understand the meaning and behavior of member
data, the role of accessor functions and constructors. They also
practice simple algorithmics without even realizing that they
are doing it. And, by now, they are begging for loops, so they
do not have to repeat the same drawing code over and over
again!!

We should add the fact that the Turtle class is actually quite
complex and includes many other functions that interact with
the appropriate graphics window and even do some automatic
scaling. However, students are given a printout only of the
relevant parts of the Turtle class definition to read in this lab.
We do not hide the fact that the class is more complex. This,
too, is a lesson to learn: one does not have to understand all of
the details to be able to use an appropriate subset of a class's
utility. The lab document that describes the lab tasks includes
questions about the code, forcing students to read and think
about the code organization

5.3 The Third Lab: Ticket Seller
At this point students are ready to add some real statements to
an existing program. The Ticket Seller program simulates a
box office that is selling tickets for one of three shows with
general admission in three categories of ticket prices: adult,
student, and child.

The program consists of two classes, the Show class and the
main application class. The Show class records the title of the
show (movie), the capacity of the theater, the prices of tickets
in each category, and the number of tickets sold in each
category as requested by the following functions:

available returns boolean with the request given either as
the total tickets or as the number of tickets in
each category

price returns the price of an order for a given ticket
request

sell records the requested ticket purchase
provided the show is not sold out.

The TickerSeller application auto-updates all displays that are
affected by a particular action: the show sales statistics, the
price list, and the number of tickets available.

There is a large amount of information recorded here. But the
problem is one that students understand very well and the
algorithmic task of keeping track of sales is very
straightforward. Because all of the interaction with the user i s
through the GUI displays, the action code is not overburdened
with extensive I/O statements that deter from understanding of
the program logic. Doing a similar program using the
sequential I/O dictated by a console interface would be an
unmanageable nightmare!!

The code for creating a Graphical User Interface with the Java
Power Tools is very compact and clean. Using the JPT toolkit,
each GUI component is created in one statement and the
relevant parts are combined into tables using code that is very
readable. The main part of the lab document guides students
through reading the code (by following the narrative that
explains various sections of the code), instructs them to make
small modifications, and then asks them to observe the
behavior of the program in response to various user actions.

The main program, constructs the GUI, and includes three short
action member functions that are activated by the
corresponding buttons. One action clears all user input fields.
The next two extract the user's request for tickets and either
ask for the price of requested tickets or actually perform the
purchase (delegating the work to the member functions of the
Show class).

There are also three actions in the Show selection part of GUI
that select the Show (object) for which the tickets are sold. The
fourth action allows the user to reset the Show (object)
statistics before selling tickets for the next performance of the
show.

What do students learn students learn here? There are three
Show objects, each with the same behavior but different
member data. The need for member data that is not controlled

Figure 3. Snapshot of Ticket Seller Lab Application

or even accessible by an outside caller becomes quite clear.
The only legitimate way to modify the member data of the Show
class that records the total number of tickets sold in each
category is by making a purchase, that is, by calling the sell
function. The responsibilities of an object and its class are
illustrated in a setting that is conceptually very clear yet rich
in object interactions and actions.

Another lesson is about assuring the integrity of the member
data. What happens when the user requests a negative number
of tickets or tries to construct an instance of the Show object
that charges $-5 for student tickets? Students add code to the

appropriate constructors and set functions so that negative
prices or requests for a negative number of tickets will not be
permitted.

Once this code is entered and repeated several times, students
are then asked to refactor the code by creating a simple private
helper function adjust(int n) that returns either the original
number, or zero, if n is negative.

The code narrative also explains the design of GUI based
programs: the definition of text fields, the extraction of data
from text fields, the definition of action buttons and their
corresponding actions, and the creation and installation of
GUI components. With the proper narrative, students are not
concerned about the details, yet they see how a GUI element
such as a button is created and “connected” to the
corresponding function invocation.

The ticket seller exercise can be extended in later courses. A
full ticket seller lab (that sells tickets for an entire movie
megaplex and maintains many statistics) would be a good
exercise for a data structures course or an object oriented
design course.

5.4 The Fourth Lab: Scaled Picture
Now that students understand the geometry of the graphics
window and the structure of the simple Picture class, they will
create in this lab a picture object using Java2D Graphics
objects: rectangles, ellipses and lines with different colors.
The picture object must be able to scale its size and shift its
location. We provide an abstract base class ScaledPicture
similar to the first Picture class. It contains the member data
needed to record the title, location, and size of the picture and
the appropriate constructors and accessor functions. The one
abstract function that must be implemented is showPicture.

Students first study two examples of concrete classes that
implement ScaledPicture. They then build a new concrete
ScaledPicture class according to specifications given in the
laboratory exercise. Finally, they are asked to design their
own concrete ScaledPicture class entirely as they wish.

The GUI provides feedback by displaying the various pictures
in different shapes and sizes. To see how the objects are created
and used, students must also implement a Mosaic action in the
main application that will create a collage of at least three
pictures.

As a variation, we also include a ScaledImage class that extends
the ScaledPicture class but displays any given gif image.

6. LESSONS LEARNED
The examples presented here break the mold of traditional
“Hello World” exercises, that use simple I/O with perhaps an

assignment statement: the “Here is some very short working
code” approach. To be truly Objects First, one has to use
objects that matter in a situation where they are useful. This i s
not possible as long as we are constrained by the sequential
I/O model of console-based user interactions. We believe that
it is not possible to do Objects First without also doing GUI
First!

We are aware that people who use BlueJ achieve some of these
goals by effectively using BlueJ to provide the interactive
interface that is not being provided by the Java program itself.
We dislike this approach because every interaction is forced
into a standard mold of “create an object, execute a method on
the object, and then inspect the object to see the results”. We
strongly prefer to provide students with a quality graphical
user interface that is designed specifically for each laboratory
exercise.

We break another mold too in introducing objects first. The
first four labs contain more code reading than most textbooks
have in an entire first course. Students understand simple
algorithms. They know how to compute the price of the ticket
order. Why is it so hard to write a program that performs the
calculations? The answer is that from the student perspective,
they have to write it in Swahili using the Cyrillic alphabet. The
key issue is to supply code that is interesting, well written,
and conceptually simple, so that students in reading it can
comprehend the role of different statements even if they may
not know all the details of language or even the precise syntax.
Gradually by reading code, then modifying code, then creating
new code, students will learn the language of programming in
much the same way that every child learns its native language,
by in-depth exposure and repetition. It is only after knowing
what the language is and how to use it that students will be
enabled to study its nuances in detail.

6.1 Online Materials
The Java Power Tools, labs, tutorials and sample files URL is:

http://www.ccs.neu.edu/jpt

This work was partially supported by NSF grant DUE-
9950829

7. REFERENCES
[1] Bruce, K. B., Danyluk, A., and Murtagh, T. P., A Library To

Support a Graphics-Based Object-First Approach to CS1,
SIGCSE Bulletin, 33(1), 2001, 6-10.

[2] Horstman, C., and Cornell, G., Core Java 1.2, SunSoft Pres,
Mountain View, CA, 1999.

[3] Koelling, M., and Rosenberg, J., Guidelines for Teaching
Object Orientation with Java, SIGCSE Bulletin, 33(3),
2001, 33-36.

[4] Koffman, E., and Wolz, U., A Simple Java Package for GUI-
like Interactivity, SIGCSE Bulletin, 33(1), 2001, 11 - 15.

[5] Lambert, K. A., and Osborne, M., JAVA Complete Course
in Programming & Problem Solving, South-Western
Educational Publishing, Cincinnati, OH, 2000.

[6] Raab, J., Rasala, R., and Proulx, V. K., Pedagogical Power
Tools for Teaching Java, SIGCSE Bulletin, 32(3), 2000,
156-159.

[7] Rasala, R., Raab, J., and Proulx, V. K., Java Power Tools:
Model Software for Teaching Object-Oriented Design,
SIGCSE Bulletin, 33(1), 2001, 297-301.

[8] Roberts, E., An Overview of MiniJava, SIGCSE Bulletin,
33(1), 2001, 1-5.

