
Usage Simulation for Evaluating Educational Materials

Viera K. Proulx
Northeastern University, Boston, MA 02115
vkp@ccs.neu.edu

Joseph W. Proulx
University of Colorado - Boulder, Boulder, CO 08310
proulx@ucsu.colorado.edu

Abstract

In this paper we describe how usage simulation can be used to evaluate
educational software. Usage simulation, typically conducted by an expert acting
as a typical user, provides a detailed review of problems encountered together
with suggestions for fixing them or for making additional improvements. We
used this method to evaluate the laboratories for the first semester of
introductory computer science course. To make sure the evaluator will identify
typical problems that a novice programmer may encounter, our evaluation was
done by a student familiar with the material evaluated, but otherwise having
only a limited programming experience.
We describe how the evaluation was conducted, present the results we obtained,
and identify the benefits of conducting usage simulation of educational software
in general.

1. Introduction

After working for several years on educational software our Computer
Science Education Research Group at Northeastern University (Harriet J. Fell,
Viera K. Proulx, and Richard Rasala) has built a large collection of laboratory
materials for teaching introductory computer science. The materials have been
class tested and we received feedback from other instructors that used them.
Still we felt a more systematic evaluation was needed before the project could be
published (on the web or commercially). Motivated by the industry practice of
user-testing software either by experts who act as naive users, or by users
themselves, we decided on a similar method.

We start our discussion by identifying the need for this type of evaluation
of educational materials. Next we describe the evaluation process. We show how
this type of evaluation differs from either evaluation done by students taking the
course, or from a peer review and finally, identify the benefits this kind of
evaluation can provide.

2. The need for user testing of educational software

2.1 Type of evaluation typically conducted

Typical software is written for a particular type of user. The designers
study the expected user behavior and design the interfaces, functionality and

documentation to satisfy the intended user. Users are involved in testing the
software written for them before the software is released. This testing may have
several different goals, for example usage simulation [6], acceptance testing [1],
or system testing [1]. Preece [6, p. 673] comments on the usage simulations:

[Often] 'these tests are done by experts, who simulate the behavior of less
experienced users' ... 'The main reasons ... are to do with efficiency and
prescriptive feedback' ... 'Often little prompting is needed to get the reviewers to
suggest possible solutions to the problems identified' ... 'Generally, they provide
detailed reports based on their use of the prototype or working system.

Software designed for classroom use is typically 'class tested'. This means
that the instructor who created the software and the supporting materials uses it
in teaching a class of students, and if it seems successful, offers the product for
use to other instructors. The author may also collect data from the students
when the materials are used in the class - e.g., by questionnaires, by observing
student's reactions, or by requesting written comments on completion of each lab
[4]. If the materials are collected into a published text or a CD-ROM, additional
feedback is obtained from other instructors who 'test' the course materials in
their classrooms.

In many cases a more structured evaluation of course materials is
conducted. For example, the instructors collect end-of-semester evaluation forms
from all students, get weekly feedback from other course instructors and
teaching assistants, and from the faculty teaching subsequent courses to the same
students [5]. More formal studies involve a comparison of two groups of
students - a control group and the group that uses the course materials [3].
Boroni et. al. used high school students to test the effectiveness of their visually
based DynaLab [2]. The result of this test made it clear that the intended
educational outcomes were achieved.

The creator of materials may also write a paper for a professional journal
or a conference describing the materials and their pedagogical value. Such
papers are peer reviewed, providing an additional feedback to the author.

2.2 Problem with these types of evaluations

The peer reviewer of journal papers can comment on the perceived quality
of a particular subset of the complete work - namely the part described in the
paper. While it is possible to see that some ideas are new, pedagogically sound,
exciting, and motivating, without seeing the actual details and observing
students in the context of the class or lab, it is hard to evaluate the effectiveness
of the actual presentation of the ideas to students.

Classroom testing may show that some of the materials are more
accessible or exciting, or better written. However, if we make mistakes, omit
something, do not explain something clearly enough, students struggling with
the materials for the first time and fighting the time pressures of all their
coursework often perceive it as their shortcomings. They may like one lab more

than another one, but it is hard for them to see that our approach may have been
at fault. Even if they think we may be wrong, they are not in a position to suggest
a suitable correction or alternative. This is especially true in introductory courses
where everything students see is very new and quite different from their
previous experiences. Weekly feedbacks from other course instructors and
teaching assistants will also reflect only the immediate reaction to the project of
the week.

The testing by high school students [2] showed the effectiveness of the
materials but did not provide a feedback on the writing style and presentation. It
also focused on one topic, rather than a whole suite of laboratories.

2.3 Employing usage simulation for evaluation of curriculum materials

Over the past several years we have built a sizable collection of
introductory computer science course materials - labs, toolkits, projects, and
exercises. After converting to C++ from Pascal, introducing object oriented
design concepts into the course, and upgrading several times to new versions of
the compiler, we needed to make these materials ready for wider distribution.
We felt, we needed to carefully review especially the first semester materials, to
make sure all concepts are presented in an appropriate sequence, explained in
sufficient detail, and follow a sensible path. We decided that we needed an
evaluation by an outsider not closely familiar with the project. We also realized,
that any evaluation by a highly experienced computer programmer will not catch
the types of mistakes that are the biggest stumbling blocks for our freshmen.
Experienced programmers would fill in the missing points without realizing it -
just like we may have done when writing the materials.

We modeled the evaluation process on the usage simulation method, with
the evaluator acting in the role of a novice student. Selecting a competent
evaluator can be quite difficult Our selection was serendipitous. Joseph Proulx,
son of one of the members of the research group had just completed his first year
at the University of Colorado, Boulder and was home for the summer. He has
taken a one semester course in C++ programming and so had fresh recollections
of the difficulties he encountered in learning the subject. He has good analytical
and writing skills and a passion for discussing technical and pedagogical ideas
with others. We had a good rapport and knew he would not hesitate to offer
valid criticism. Harriet Fell offered to use funds from her professional
development fund to pay for Joe's work.

We now describe the evaluation process and follow by assessment of the
results.

3. The evaluation process

We did not feel the evaluator needed any instruction or lectures in the
concepts or skills needed to do the projects. As needed, we clarified technical
details peculiar to our environment but otherwise he worked independently. To

provide guidance, we divided the evaluation of each lab into two phases:
working out the solution and reflecting on this experience.

For each lab the evaluator read all the lab materials and worked out the
solutions, just as a student in class would. During this time, he kept records on
the time spent and wrote comments both in a journal and on the margins of the
lab handouts. A Lab Evaluation Checklist (see appendix A) provided a
framework for this evaluation. This checklist was deliberately quite detailed.
The goal was to point out the different types of problems - writing, goals not
clearly defined, tutorial part unclear, missing or confusing instructions,
instructions too detailed so student had little thinking to do, etc. The goal was to
make sure the evaluator felt free (and responsible) to comment on all aspects of
the laboratory materials.

Upon completion of each lab the student reported his findings, comments,
and criticism by writing a Lab Evaluation Report (see appendix B). The first part
of the report included the length of time the evaluator needed to read the lab
assignment and to actually work on the required programming (design,
implementation, and debugging), followed by a list of specific problems
encountered while reading the lab or while working on the programming
solution. The next part of the report contained free form comments or editorial
suggestions most appropriate for the given situation. The Lab Evaluation
Checklist was used as a guideline for the kinds of questions that needed to be
addressed. The evaluator was allowed (and encouraged) to ask questions while
working on the labs. The numerous discussions we had during the evaluation
process supplemented the written reports in a significant way.

3.1 Sample comments and evaluation feedback

The results of this evaluation were quite impressive. Our evaluator had a
number of substantial comment for the first few labs - the ones that come at the
most critical stage. To understand the depth of the evaluation and the quality of
the feedback we received, we list below a selection of comments from the written
reports, and comment on the impact of some of them on our work.

• "while my impression of the ... code supplied to student is positive, there
seems to be an awful lot of thinking-work to be done at such an early
stage..."
The lab was revised to contain a simple startup problem before more
complex ideas were introduced.

• "...The last paragraph, on loops, never says what a loop is..."

• "... You mention a few key concepts without defining them..."

• "... I suggest that the explanation be linked with an introduction to what
happens in the lab..."

• "... there are about five listed goals and this may be too many...there
should be two types of goals, which I will call primary and secondary.

The primary goals are to learn for loops and do a simple animation.
Clearly, loops are one of the most important concepts for an introductory
computing course. The secondary goals are to learn several new coding
tools. These include delay, SysBeep, and the SoundChannel class."
This lead to a complete revision of the way goals are listed in all labs.

• "The section on materials is okay, although at first it seems as if there are
far too many files associated with this lab. However, the first real
problems come in the next section, at the bottom of page 2. 'The essence of
abstraction is to make manifest the crucial concepts at the highest level
and to hide the details at the lower levels' is a problematic sentence; the
sentence is the essence of abstraction, perhaps."

• "...I have one suggestion for the 'Laboratory Activities section. I found it
much more useful to run the solution under the pause mode, so that I
could make predictions based on my version of the algorithm and then
test them (i.e., the scientific method)...."

• "... Currently the main goals of this lab are to introduce the type double
and the concept of returning values to functions. I suggest that these be
changed to more advanced concepts. ... As a replacement of these goals, I
suggest you introduce reference parameters here. They are used widely in
the [next] lab, but that lab introduces too many new concepts to allow
beginning reference parameters there as well..."
This was an extremely useful comment and lead to a complete revision of
this lab and its goals.

This type of evaluation is quite time consuming. It requires that the
evaluator not only has the time to read the lab materials and do the lab
assignment, but that there is a time for reflection, asking questions, thinking
about alternatives, questioning the authority. As can be seen from the selected
comments, our evaluator had a number of very valuable suggestions - not only
about the individual labs, but even about changing what topics were introduced
in a particular lab. The corrections ranged from simple grammatical mistakes to
suggestions for a complete reorganization of the code supplied to students. Our
evaluator played the role of novice programmer very well - he would often
comment - 'I would have liked to learn this topic your way' or, alternately, 'This
is too much to do all at once'.

It is clear that such a thorough evaluation could not have been done by
students currently enrolled in the class and filling out a post-mortem
questionnaire. Teaching assistants burdened with the time pressure of regular
teaching and grading together with their own coursework also could not provide
such a detailed review. A novice that does not know what new concepts may
appear in the next lab does not have the necessary perspective to comment on
the overall flow of the whole course. The evaluation reports we received made it
clear that a well-structured usage simulation by an advanced neophyte is an
effective evaluation method for introductory laboratory materials.

We are now in the process of rewriting and editing these labs and expect
that the students taking the course this year will benefit greatly from these
improvements. We have revised several of the labs based on these evaluations.
We also decided to separate a substantial amount of tutorial material from the
laboratory instructions. We felt that the students in the course this Fall were
more comfortable with the lab materials and focused better on the concepts
presented in each lab. We expect to do the final careful revisions this summer.

4. Conclusion

A systematic evaluation of a collection of course materials is a difficult
task. The authors of the labs are not well suited to do such evaluations alone.
They are too close to the product, implicitly understanding points that may not
be clear to students. They also may not think of alternate ways of presenting the
goals, the tutorial, or the activities. Students taking the class also cannot see the
big picture - being immersed each week in the most current activity and trying to
absorb a wealth of new concepts. Peer evaluation could work to some extent, but
it would require that the peer evaluators would also actually do all the student
coding. The main concern here would be the amount of time required to do such
a thorough evaluation.

We feel that usage simulation method for evaluation of curriculum
materials by a student only slightly ahead of the targeted group provides a
feedback not available from the traditional sources. It is important that such
evaluator does not have difficulties understanding the concepts, is able to ask
questions, is not afraid to offer criticism, and can reflect on the overall structure
of each lab individually, as well as the structure of the whole course. Such work
should always be rewarded - in salary or a course credit. It would be valuable to
have several students conduct these evaluations, hopefully providing a
perspective related to different backgrounds and learning styles. We highly
recommend this form of evaluation to others involved in the curriculum material
development.

References

1. Adams, D. R., Powers, M., and Owles, V. A., Computer Information Systems
Development: Design and Implementation, South-Western Publishing Co.,
Cincinnati, OH, 1985.

2. Boroni, C. M., Eneboe, T. J., Goosey, F. W., Ross, J. A., Ross, R. J., "Dancing
with DynaLab: Endearing the Science of Computing to Students",
Proceedings of the 27th SIGCSE Technical Symposium on Computer Science
Education, Philadelphia, PA, 1996, 135-139.

3. Calloni, B. A., and Bagert, D. J., "Iconic Programming Proves Effective for
Teaching the First Year Programming Sequence", Proceedings of the 28th
SIGCSE Technical Symposium on Computer Science Education, San Jose, CA,
1997, 262-266.

4. Fell, H. J., Proulx, V. K., and Casey, J., "Writing Across the Computer Science
Curriculum", Proceedings of the 27th SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, PA, 1996, 204-209.

5. Parker, B. C. and McGregor, J. D., "A Goal Oriented Approach to Laboratory
Development and Implementation", Proceedings of the 26th SIGCSE
Technical Symposium on Computer Science Education, Nashville, TN, 1995,
92-96.

6. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T.,
Human-Computer Interaction, Addison-Wesley, 1994.

Partial support for this work has been provided by the National Science
Foundation Leadership in Laboratory Development , award #DUE- 9650552

Appendix A: Lab Evaluation Checklist

Part I:

• Read the lab write-up.
• Record the amount of time you spent reading it.
• Mark all places where the explanation is not clear, suggest changes, write

down the questions you have.
• Suggest corrections to grammar as needed, including spelling errors.

Part II:

• Do the lab.
• Record the length of time you needed to do the lab.
• You are allowed to ask questions of one of us while you do the lab (or before

that). Record the questions you asked.
• Record the problems you encounter, (other than expected debugging errors)
• Complete the lab report if there is one

Part III:

Write a short summary of your overall impression of the lab focusing on the
following questions:
• What do you think the lab was supposed to teach
• Did it do it 'the right way'
• Were the goals clear
• What was confusing
• What was missing
• What can be improved
• What else may students need to know before doing the lab
• Were you told too much?
• Was it too wordy? too brief?
• What do you think about the balance between the code supplied to the

student and the work to be done - is it right, too much of our code, too much
stuff for students to do

• Do we over-explain or overspecify the assignment - how can we improve that
aspect

• Was the lab interesting - why or why not

You may also suggest changes and even to write down new prose as an
alternative. In addition, you may suggest new labs based on gaps you discover,
or based on other interesting problems that may occur to you

Appendix B: Lab Evaluation Report

Lab Title:
Evaluator:
Report Date:

Part I:

• Record the amount of time you spent reading the lab:
• Mark corrections and suggestions on the copy of the lab write-up, or create a

new MS Word document

Part II:

• Record the length of time you needed to do the lab:
• Record the questions you asked while doing the lab:

• Record the problems you encounter, (other than expected debugging errors):

Part III:

Write a short summary of your overall impression
(following the suggested outline)

