
Curricular Patterns
Editor: Joe Bergin, Computer Science Department, Pace University; berginf@pace.edu

Calculator Problem and the Design Recipe

Viera K. Proulx and Tanya Cashorali
College of Computer and Information Science

Northeastern University
Boston, MA

vkp@ccs.neu.edu cash21@ccs.neu.edu

Abstract

This paper presents an alternative — and what we believe
a superior — approach to designing a solution to the
calculator problem due to Alphonce [1]. While Alphonce
presents a fictitious one-act play between professors, this
paper consists of a narrative explanation of the Java code
written by this paper’s coauthor, – a student who just
completed the freshman year.

The purpose of this paper is to illustrate the use of the
DESIGN RECIPE pedagogy and the idea of focusing on
the design of the structure of data, the classes, and class
hierarchies, rather than the design of program actions (the
algorithmics) as the core idea for program design. By
contrasting the pedagogical approach and the final out-
come with the “traditional” objects-first approach, we il-
lustrate the advantages of our curriculum that teaches the
students how to think about program design in a truly
object-oriented style.

1 Introduction

In May 2004 issue of the Curricular Patterns, Carl
Alphonce [1] describes the conversations of several col-
leagues that led to two solutions for a problem of emulat-
ing a calculator. The goal was to illustrate for students the
power of polymorphism. We believe, that their approach
is fundamentally flawed and leads to both a wrong model
of computation and a wrong pedagogy for teaching the
design of class based programs using object-oriented lan-
guages. We have the following objections to the overall
approach:

• While presented as a socratic dialog, the discussion

is not between the teacher and the apprentice stu-
dent, but between two colleagues. In contrast, we
focus on the interactions between the teacher and the
student.

• The approach that focuses on the algorithmic solu-
tion without analyzing the structure of data produces
a complex solution, that is un-inspiring and confus-
ing example of the use of design patterns. In real
life, people learn about patterns by observing a num-
ber of similar situations and abstracting over them,
thus not only understanding the pattern, but also the
underlying abstraction process. Our focus should be
on teaching these skills.

• The approach fails to recognize that the behavior of
a calculator is really a variant of an interpreter. The
design of interpreter follows closely the structure of
the language of the expressions being evaluated - re-
sulting in a cleaner, more scalable, and more system-
atically designed solution. Additionally, it provides
an opportunity to illustrate to students the nature of
computation that underlies the program evaluation.

We believe students should discover design patterns
as they design their own programs where these patterns
emerge in the appropriate context. In contrast to the de-
sign patterns based approach, our curriculum, under de-
velopment for the past three years, focuses on the struc-
ture of data as the key to understanding the design of class
hierarchies, the model of computation, and the role of
polymorphism in object-oriented programs. Combined
with the pedagogy that supports the student with clearly
defined steps of the design process in the form of the DE-
SIGN RECIPE 1 we have increased the retention in our

1DESIGN RECIPE, is not a design pattern!!!

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 4 Vol. 40(3), Mar 2005

courses and produced students who are much better pre-
pared for the subsequent course on Object Oriented De-
sign. This claim is based both on the numerical results,
and on the subjective comments of the colleagues teach-
ing the subsequent classes. Additionally, the responses to
our summer faculty development workshops over the past
two years have been overwhelmingly positive, with sev-
eral high school teachers using the curriculum with great
success in their classrooms.

The calculator problem provides an excellent context
for presenting a concrete example of the effect of our ped-
agogy of following the DESIGN RECIPE and focusing on
the design of class hierarchies in a systematic way [6].

2 The design recipe

The DESIGN RECIPE is a blueprint for the design of pro-
grams or for defining data - tailored to a particular struc-
ture of the underlying information. At each step of the
design process it describes the questions to ask, and de-
fines a tangible outcome that can be seen and checked
for correctness or completeness. The DESIGN RECIPE
teaches students to think about problems in a systematic
way. It also provides the instructor with a pedagogical
intervention tool - a way to ask the student questions that
show where the student is stuck, and assists in guiding
the student in overcoming the problem. This pedagogical
approach, known as self-regulated learning [5, 13, 15],
has been shown successful in other learning situations,
including in support of weaker learners.

The basic DESIGN RECIPE consists of the following
steps:

Problem analysis and data definition: Analyze the
problem, the available information, represent the in-
formation as data.

The purpose statement, contract and header: Write
a brief statement that describes the purpose of the
program, define the data it will consume and pro-
duce, write the program header (a function header or
a method header, and in case of untyped languages,
a contract as well).

Examples: Create working examples illustrating the
use of the program, together with the expected out-
comes.

Template: Write down a template of all data items
available to solve the problem. For example, when

the program consumes compound data, identify all
components that are available.

Body: Designing the body of the program.

Tests: Use the earlier examples as test cases to test your
program. You may add more tests, but they should
not be necessary.

Each variant of the DESIGN RECIPE decribes in greater
detail the questions student should ask when analyzing
the problem, provides guidelines for developing the tem-
plates based on the structure of data, explains how to de-
sign a suitable set of examples, etc., reflecting the com-
plexity of the problem structure and the language con-
straints. The series of design recipes then forms a frame-
work for dealing with increasing levels of complexity of
program design.

Notice that the DESIGN RECIPE enforces the design
of the test suite prior to the development of the program
body. Additionally, this design process assures that the
student understands how the program she designs will be
used by the client code - a step often neglected in pro-
gramming courses.

Our teaching consists almost entirely of a true socratic
dialog - between the teacher and the apprentice student,
the questions supplied by the DESIGN RECIPE. Students
quickly learn to ask the same questions and work on the
design independently.

However, the DESIGN RECIPE alone would not work
if the problems our students worked on required them to
address a number of confusing issues at the same time.
To constrain the complexity in a systematic way, the
structure of the programs students first work on follows
the structure of the data that the program consumes. The
series of DESIGN RECIPEs then reflect the increasing
complexity of the structure of data and programs that
consume this data. This type of programs are well studied
in the programming languages community and can be
proven correct. The advantage from the pedagogical
point of view is that students do not need to invent
algorithms or understand additional domain knowledge.
In due time our examples bring in many interesting appli-
cations of computing, including animated graphics and
event handlers, but within the confines of a well struc-
tured context. Students realize quickly that this approach
scales up to very complex problems - as demonstrated by
the programming environment they use: ProfessorJ [11]
series of languages within DrScheme [10] programming
environment — a programming langugages research

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 5 Vol. 40(3), Mar 2005

project in its own right.

To illustrate the design process students work through,
this paper is written by two authors, the teacher and the
student. During the summer the student has been working
for the teacher on an administrative project that does not
involve programming, and she has not touched Java for
three months. She agreed to come to school for a day to
work on the problem. She did not know anything about
the problem, other than that it would involve modeling a
calculator. The teacher gave her Alphonce’s paper, with
the instructions to only read it on the train ride to Boston,
so she would not try too hard to understand the approach
presented there.

Section 3 presents the student’s narrative of her expe-
rience. The teacher’s comments interrupt the narrative
to clarify some of the DESIGN RECIPE terminology, to
fill in a few missing pieces, and to comment on the de-
sign process from the teacher’s point of view. Section 4
contains the code, written entirely by Tanya. Section 5
contrasts our pedagogy and our way of teaching object-
oriented program design with the traditional approaches.
An appendix explains some of the conventions used in
our teaching and shows how the code translates to a more
traditional approach.

3 The Design Process

Dramatis Personae

S: the student

T: the teacher

S: The first time I read over the paper on the calculator
program, I was on a northbound train headed for North-
eastern University in Boston. I felt a little nervous that I
was going to try to design this program using the DESIGN
RECIPE, which I learned in the freshman year. The pro-
gram seemed too complex and the solutions offered were
not easy to follow. I was also pretty rusty on my Java
and programming skills in general. I read the solutions
over several times and then put them away and continued
reading The Da Vinci Code.

S: I arrived in Boston and met up with the teacher in her
office. She immediately handed me a calculator and a pad
of paper. She told me to press some buttons and solve a
few equations. Then she asked, ”What is happening?” It
seemed too easy. I replied, ”I press a number, then the

plus sign, then another number, then if I press the plus
sign again, it will evaluate the ongoing sum.” She then
told me to write down what data was available before any
buttons are pushed on the calculator. The calculator starts
off with ”0” as the display. The initial equation inside the
calculator is ”0 + 0.” The teacher then told me to create
a chart that shows the display on the calculator, what I
input, and what the calculator is storing inside. It looked
like this:

Input Information Inside Calculator Display
start 0 + 0 0
2 0 + 2 2
+ 2 + 0 2
4 2 + 4 4
+ 6 + 0 6
1 6 + 1 1
+ 7 + 0 7

S: This is the first step in the design recipe, which is to an-
alyze the problem, determine what data is given, and
what type of data must be produced. This chart helped
me realize that a calculator has this type of data:

• Input - integer or operator

• Information inside calculator (int1, operator, int2)

• Display - int

T: As we can see, it is the student who discovers the
structure of the data and reasons about what is going on.
Teacher’s intervention is mostly in terms of questions,
only occasionally suggesting the preferred path.

S: I then went into an office and began working out this
problem given the following information.

• The person knows how to operate a calculator and
will only press numbers followed by operators.
(Will not press 2, + 3, +, +, -, +)

• There is no need for equals operation, just add, mul-
tiply, subtract, divide.

S: Based on this information and the chart of data, I
named the necessary functions and classes I would need
to evaluate these pieces of information. The first class
I created was the Calculator class, which contained
all of the variables in my initial chart. The only operator

SIGPLANACM
Curricular Patterns

ACM SIGPLAN Notices 6 Vol. 40(3), Mar 2005

class I started off with was the addition operator. I knew it
was the only one I had to start out with because once I fig-
ured that out, the rest of the operators could be abstracted
based on the way the addition class worked. Then I had
to name the functions within each class and write their
purpose statements. I made the methods digit and
operation. [The method] digit would consume an
integer and produce a new Calculator; it also allowed
the calculator to use more than just one-digit numbers.
(i.e. 2, 2, 3, = 223). This function just multiplied the first
number by 10 and added the next number inputted. The
last function in Calculator was operation, which
consumed an operator (+, *, -, /) and produced a new
Calculator. The operation method actually just
invokes the abstract evaluate method in the appropri-
ate Operator [sub]class. The Plus class contained a
function called evaluate that would simply return the
sum of int1 and int2.

T: In our terminology a method consumes data (the in-
stance which invoked the method, and the method’s argu-
ments) and produces a value. Methods that do not pro-
duce values (with the return type void) are not used at
the beginning, as we are “favoring immutability” [4] and
“using value objects whenever possible” [3]. The OO
community is realizing that programs which avoid mu-
tation are easier to work with, to debug, and to verify.
While the advantages of immutability are well understood
and supported by the research in programming languages,
the educational community is mostly ignoring the lessons
it could learn.

T: At this point the student is working on several meth-
ods and classes concurrently, but understands through-
out the structure of data as represented in the class dia-
gram (shown later). The student also feels comfortable
with using methods for which only the purpose and the
header are known. This is understandable, as the stu-
dent is used to making examples of use for the methods
specified by their purpose and the header. This also pre-
pares students in general for working with libraries and
other code, where the implementation of the methods is
not known to the user.

S: I then proceeded to step 2 of the DESIGN RECIPE: ex-
amples. I then prepared examples of how the calculator
program would work based on my chart.

Examples:

Calculator c = new Calculator(0,0,new Plus(),0);
//creates an initial blank calculator.

c.digit(8)
//inputs 8 into the Calculator c.

c.digit(8).display == 8
//checks to see that the display is 8

c.digit(8).num2 == 8
//checks to see that num2 is 8 (0 + 8)

Calculator c2 = c.digit(8);
//creates a new calculator c2 and inputs 8

c2.operation(m)
//should produce new Calculator(8, 8, m, 0)

c2.operation(p).digit(3).operation(p)
//should produce new Calculator(11,11,p,0)

Calculator c3 = c2.digit(2);
//a new calculator c3 from c2 and inputs 2

c3.display == 82
//checks that display is 82 on calculator

T: For a homework assignment the examples would have
to be constructed more carefully — covering all possibil-
ities and consisting entirely of the pairs of lines: [method
invocation] [”should be” result]. In our curriculum this
leads naturally to the discussion about the various ways in
which two compound structures may be considered equal
— a very important issue to understand.

S: Now that I knew how the program should be working,
I constructed templates for each function. This is the
third step in the DESIGN RECIPE. That means I wrote
every piece of available data for each function. For
example the digit function within the Calculator
class looked like this:

Template:

Calculator digit (int n){
... this.display ...
... this.num1 ...
... this.op ...
... this.num2 ...
... n ...

}

S: The template made me aware of the pieces of data I
had available within the digit function. The purpose for
digit was that it

//consumes an integer and produces a new Calculator

S: I knew this because I remembered my chart every time
a key was pressed, whether it was a number or operator,
a new Calculator was always produced.

S: Following the DESIGN RECIPE, I continued to the
fourth step. Using my templates as a guide, I began to

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 7 Vol. 40(3), Mar 2005

narrow down the data for all of the functions and figured
out how each of the functions formulated their results
based on purpose statements, the examples, and the
template. I already knew what data was available due
to my templates and what each function should consume
and produce, so it just came down to arithmetic thinking.
I realized how the Plus class worked and the teacher
told me to make the rest of the operator classes work just
like that one. I created an abstract Operator class that
every other operator class extended. Then it was simple,
the user supplied the operator like this:

p = plus, m = multiply, d = divide, s = subtract

p.evaluate(5, 6) // would add 5 and 6.
m.evaluate(2, 5) // would multiply 2 and 5.
d.evaluate(8, 2) // would divide 8 by 2.
s.evaluate(6, 3) // would subtract 3 from 6,

// and so on.

p, m, d, and s extended the abstract class, which
looked like this:

abstract class Operator {
// evaluate the appropriate operation
abstract int evaluate(int n1, int n2);

}

S: Each Operator [sub]class has a method
evaluate, which consumed two integers and the
user already inputted whether to add, multiply, subtract,
or divide. Therefore the only differences in the classes
are the return statements, which just evaluate the two
numbers using the given operator in the matching class.

T: The student does not describe the design of the
operation method that appears in her code. She had
no problem designing the method, or using it once she
worked out the examples.

T: The student also designed the class diagram along the
way. For more complex problems we usually separate
the design of the class hierarchy from the design of the
methods. Some of that thinking is reflected in the initial
stages of this design process.

S: Now the calculator operations were abstracted and ev-
erything appeared to be written efficiently. It seemed too
simple to be true. Sure enough, I ran my final tests,
the final step of the DESIGN RECIPE, Professor Proulx
looked them over, and the program was complete and it
worked! I went through all of the proper steps of the DE-
SIGN RECIPE and was out of the office in three hours,
something I had not imagined I was capable of doing.

T: This last comment makes it clear that this was a typ-
ical student — not the ’know-it-all’ wizard — who just
learned to work out problems in a systematic way and
could use her knowledge in a new situation.

4 The Code

The Operator Classes:

// represent an operator key on a calculator
abstract class Operator {
// evaluate the appropriate operation
abstract int evaluate(int n1, int n2); }

class Plus extends Operator {
Plus(){}

int evaluate(int n1, int n2) {
return n1 + n2; }

}

class Subtract extends Operator {
Subtract(){}

int evaluate(int n1, int n2) {
return n1 - n2; }

}

class Multiply extends Operator {
Multiply(){}

int evaluate(int n1, int n2) {
return n1 * n2; }

}

class Divide extends Operator {
... }

The Calculator Class:

// represent a simple calculator
class Calculator {
int display; //current display on calculator
int num1; //current number that’s been hit
Operator op; //operator
int num2; //next number that’s been hit

Calculator(int display, int num1,
Operator op, int num2) {

this.display = display;
this.num1 = num1;
this.op = op;
this.num2 = num2; }

// consumes an int
// and produces a new Calculator
Calculator digit(int n) {
return new Calculator(

(this.num2 * 10) + n,

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 8 Vol. 40(3), Mar 2005

this.num1,
this.op,
(this.num2 * 10) + n); }

// consumes an operator
// and produces a new Calculator
Calculator operation(Operator op) {
return new Calculator(

this.op.evaluate(this.num1, this.num2),
this.op.evaluate(this.num1, this.num2),
op,
0); }

}

Test Cases:

Operator p = new Plus();
Operator m = new Multiply();
Operator d = new Divide();
Operator s = new Subtract();

Calculator c = new Calculator(0,0,new Plus(),0);
c.digit(8).display == 8
c.digit(8).num2 == 8

Calculator c2 = c.digit(8);
c2.digit(2) // should produce
new Calculator(82, 0, p, 82)

s.evaluate(3, 4) == -1
p.evaluate(56, 23) == 79
p.evaluate(1, (d.evaluate(10, 5))) == 3
m.evaluate(7, 8) == 56
p.evaluate(5, 71) == 76

c2.operation(m) // should produce
new Calculator(8, 8, m, 0)

c2.operation(p).digit(3).operation(p)
// should produce
new Calculator(11, 11, p, 0)

c2.operation(m).digit(3).digit(4).operation(p)
// should produce
new Calculator(272, 272, p, 0)

The Class Diagram
+--------------------------------+
| Calculator |
+--------------------------------+
| int display |
| int num1 |
| Operator op |
| int num2 |
+--------------------------------+
| Calculator digit(int) |
| Calculator operation(Operator) |-+
+--------------------------------+ |

v
+------------------------+
| Operator |
+------------------------+
| int evaluate(int, int) |
+------------------------+

/ \

|

| | | |

+------+ +----------+ +----------+ +--------+
| Plus | | Subtract | | Multiply | | Divide |
+------+ +----------+ +----------+ +--------+
+------+ +----------+ +----------+ +--------+

5 Reflection

S: In conclusion, the DESIGN RECIPE is the most effi-
cient and simplest method to use when writing programs
of any level of complexity. I compared the approach used
in my high school computer science AP class with the
DESIGN RECIPE approach. In high school, we walked
through the program line by line, adding variables as we
went, making up algorithms in the middle of it all, and
then testing. The DESIGN RECIPE on the other hand, pro-
vides a more structured guideline to solving any problem
presented.

S: After one semester of learning the DESIGN RECIPE
and coding in the DrScheme environment, we all easily
adapted to programming in Java. We applied this method
to our Java programs and found it rather simple to com-
plete our homework assignments. The course jumped
right into recursion and assorted data types (stacks, ar-
rays, vectors), but we had already learned these funda-
mental building blocks of computer science, which made
for a smooth transition.

This approach allows anyone to start out programming
efficiently even if they have no prior experience. It
will also improve a veteran programmer’s skills and
make his life a lot easier, as it eliminates much of
the obstacles that computer scientists run into when
programming. In my experience the DESIGN RECIPE
has been helping me in my other computer science
courses, and it gives me confidence knowing that I can
work through any programming problem I will encounter.

T: We believe that our pedagogy and the code designed
by the student is superior to Alphonce’s [1]. The
pedagogy enables a student to work independently
on solving problems, regardless of the programming
langugage used. In the context of object-oriented
program design, it leads to a design where the structure
and meaning of all classes and methods is clear. There
are no unnecessary variables recording the current
state of the calculator - the dispatch between the dif-
ferent actions is governed entirely by the key pressed
by the user. Our implementation also models nicely
the behavior of an interpreter and scales easily to deal
with the equal sign, and even the precedence of operators.

We find it interesting, that a first year student can
design in a short time and with no preparation a program
that is in many ways a much cleaner design than has been

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 9 Vol. 40(3), Mar 2005

presented by seasoned computer science instructors as a
model to emulate. The “design patterns first” approach
presented in [1] fails to capture the essence of the
problem, employing the state and strategy pattern in a
wrong context. A search through textbooks [2, 14] failed
to find a better solution to this problem.

6 Acknowledgments

This “curriculum pattern” is a joint work of the whole
team (see http://www.ccs.neu.edu/home/vkp/htdch), but
the authors are responsible for the contents of this note.
The authors would like to thank Matthias Felleisen who
taught us both how to ask questions. Thanks to Marc
Smith for valuable suggestions on how to improve this
paper.

References

[1] C. Alphonce, Pedagogy and Practice of Design Pat-
terns and Objects First: A one-act play. ACM SIG-
PLAN Notices, 39(5):11–14, May 2004.

[2] D. J. Barnes and M. Koelling. Objects First With
Java: A Practical Introduction Using BlueJ Pren-
tice Hall, 2003.

[3] K. Beck. Test Driven Development By Example Ad-
dison Wesley, 2001.

[4] J. Bloch. Effective Java. Addison Wesley, 2001.

[5] Peggy A. Ertmer, and Tomothy J. Newby. The ex-
pert learner: Strategic, self-regulated, and reflective.
Instructional Science, 24(1):1–24, 1996.

[6] M. Felleisen, R. B. Findler, M. Flatt, K. E. Gray,
S. Krishnamurthi, and V. K. Proulx. How to
Design Class Hierarchies. In preparation, (See
http://www.ccs.neu.edu/home/vkp/htdch/).

[7] M. Felleisen, R. B. Findler, M. Flatt, and S. Krish-
namurthi. How to Design Programs:An Introduc-
tion to Programming and Computing. MIT Press,
2001.

[8] M. Felleisen, R. B. Findler, M. Flatt, and S. Krish-
namurthi. Structure and interpretation of the com-
puter science curriculum. FDPE, 2002.

[9] M. Felleisen and D. Friedman. A Little Java A Few
Patterns. MIT Press, 1998.

[10] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for
Scheme. Journal of Functional Programming,
12(2):159–182, March 2002. A preliminary version
of this paper appeared in PLILP 1997, LNCS vol-
ume 1292, pp. 369–388.

[11] K. E. Gray and M. Flatt. ProfessorJ: A gradual intro
to Java through language levels. In Object-Oriented
Programming, Systems, Languages, and Applica-
tions (OOPSLA), October 2003.

[12] Junit framework http://www.junit.org.

[13] Bonnie D. Singer, and Anthony S. Bashir”, What
are executive functions and self-regulation and what
do they have to do with language learning disor-
ders. Language, Speech, and Hearing Services in
Schools, 30:265–273, 1999.

[14] C. T. Wu. An Introduction to Object-Oreinted Pro-
gramming with Java, 3rd. ed. McGraw Hill 2004.

[15] B. J. Zimmerman, and D. H. Schnuck (eds.) Self-
regulated learning and academic achievement: The-
ory, research and practice. Springer Verlag, 1989.

7 Appendix

Testing the code
To properly test all class definitions and all methods,
we require that each new class definition is instantiated
with appropriate examples, and that the examples of the
method invocation used in the design are converted into
test cases. Whenever possible, the evaluation of the test
results should be automatic. We are working on making
this possible in multiple environments and for different
levels of equality comparison.

In a plain Java environment our sample instances
would become member data of a TestClient class,
and and the method invocations would be contained in a
method that performs all tests and reports the results. So,
for example,

m.evaluate(7,8) == 56

could be replaced by

SIGPLANACM
Curricular Patterns

ACM SIGPLAN Notices 10 Vol. 40(3), Mar 2005

System.out.println(m.evaluate(7,8) == 56);

within some test method.

Access modifiers and the use of this
The code does not include any access modifiers, as
we delay the discussion of access modifiers (public,
private, etc.) until the students are comfortable writ-
ing code where such differences are meaningful.

We also qualify each access of the member data within
the method definitions with ”this.” to highlight the use
of the instance on which the method was invoked as its
implicit argument. For example, the body of the method
that compares the price of an instance of a book with the
price of other book becomes:

return this.price < that.price;

illustrating clearly the use of the invoking instance as an
implicit argument for the method.

Converting to the imperative style
The imperative style that requires mutation of one
Calculator object is easily derived from our solution.
The method digit replaces the invocation of a new con-
structor with the statements that comprise the body of the
constructor. The new variant of the method will then be:

// consumes an int
// effect: the Calculator reflects new state
void digit(int n) {
this.display = this.num2 * 10) + n;
this.num1 = this.num1;
this.op = this.op;
this,num2 = (this.num2 * 10) + n;

}

Care has to be taken that values are not modified
when they still may be needed to set the subsequent
values, and redundant assignments, such as this.op
= this.op; can be eliminated. The operation
method would become:

// consumes an operator
// effect: the Calculator reflects new state
void operation(Operator op) {
this.display = this.op.evaluate(this.num1,

this.num2);
this.num1 = this.op.evaluate(this.num1,

this.num2);
this.op = op;
this.num2 = 0;

}

Error checking
One of the solutions in the original paper signals an error
when the user hits two successive operator keys. Follow-
ing the Design Recipe, we would realize that the calcula-
tor has a variant that responds differently to the operator
key, warranting the definition of a NoOpCalculator
subclass of the original Calculator, that redefines the
operation method:

class NoOpCalculator extends Calculator {

// consumes an operator,
// produces calculator with no change
// signal error if operator key hit twice
Calculator operation(Operator op) {
System.out.println("Repeated operator");

// do not allow third operator either
return this;
}

}

The original operation method in the class
Calculator then returns a new NoOpCalculator,
indicating that the next input should be a digit.

It should be noted, that at this point, it is no longer
trivial to convert the code to imperative style, precisely
because the problem illustrates the state design pattern.
However, the conversion process is straightforward, yet
clearly illustrates where the need for state comes in. We
then have a wonderful opportunity for discussing the op-
tions for handling the change of state, framed in a clearly
understood context. The change of state may even be
managed by the GUI - by disabling the operator keys,
once the operator has been hit, until a digit key has been
pressed at least once.
Views
We have several implementations of the views for this
model — one that responds to the input from the com-
puter keyboard, one where the user interaction is via but-
tons in a GUI, as well as text-based evaluations in Profes-
sorJ’s interactions window.
Late September
In late September, the student came to the teacher’s office,
all excited:

“Teacher, we had to design this function in C to
convert numbers from any base to any base, and
Lindsay and I followed the DESIGN RECIPE
and we got it and we really understand how it
works. And the other students were asking us,
how we got it so fast, and we told them, ’follow
the design recipe!’. It works for any language!”

SIGPLANACM

Curricular Patterns

ACM SIGPLAN Notices 11 Vol. 40(3), Mar 2005

