
From Animation to Analysis in Introductory Computer Science
Richard Rasala, Viera K. Proulx, Harriet J. Fell

College of Computer Science
Northeastern University, Boston, MA 02115

E-mail: rasala@ccs.neu.edu, vkp@ccs.neu.edu, fell@ccs.neu.edu
 (SIGCSE’94.
Copyright 1994 ACM 1-58113-499-1/94/0006…$5.00.)

Introduction

At educational computer conferences and exhibits, one is overwhelmed by the extensive
use of computers as learning tools in almost any subject. However, the one subject which
stands out for its limited use of computers is computer science. There is a tendency in
computer science education to focus on what goes on in the mind: design and analysis of
algorithms, development of data structures, and use of abstraction and modularization in
programming. The computer is seen only as the object of study but not as a tool in the
educational process. The danger in such an approach to teaching computer science is that the
student may become facile in the use of formalism and languages but may fail to deeply grasp
what is really going on.

One important way in which computers have been used in computer science to assist the
educational process is by the development of algorithm animations. Algorithm animations
have been created by a number of computer science educators including ourselves []. The
primary goals of these algorithm animations have been:

• To permit students to observe an algorithmic animation rapidly in order to grasp
the overall gestalt of the algorithm

• To permit students to examine an algorithmic process in a step-by-step fashion in
order to understand the details of the algorithm

In our curriculum work, animations have been used in three additional ways. We use
animation lab exercises to teach basic programming structures such as loops, branches,
procedures, and arrays. We use more sophisticated algorithm animations as a rich collection
of source code to illustrate abstraction and program design principles. Finally, we expect
students at the conclusion of the freshman year to be able to create animations of their own
for a variety of algorithms.

Recently, we have discovered how to integrate algorithm animations with the more
traditional concerns of analysis of algorithms. Our process requires four steps:

• Students execute algorithm animations to understand how the algorithms work and
to obtain a rough idea of how fast or slow each algorithm runs.

• Students acquire detailed performance data on all algorithms by running a separate
“Time Trials” program which permits them to design and refine experiments with
the algorithms and to collect comparative results.

• Students import their performance data into a spreadsheet program for analysis and
the creation of charts.

• Students prepare a report which discusses the performance data and the charts in
relation to the animations and to the theoretical “Big O” estimates. Agreements and
anomalies must be explained in the report.

Our students carried out this process for the classical sorting algorithms. Their response to the
assignment was the most enthusiastic of any exercise we gave in the freshman year. After the
project, students felt that they really understood the algorithms deeply. We believe that the
key to this success was the integration of animation, performance data, theory, and high

quality spreadsheet tools for analysis. Students were given the chance to act as scientists: to
discover and confirm for themselves rather than to be told what is the right answer.

In this article, we will contrast the traditional approach to the explanation and analysis of
algorithms with our methods which integrate animation, data analysis, and software tools into
the process. We will also argue that this methodology has implications for other areas of
computer science education.

Traditional Algorithm Analysis

Traditional courses on Algorithms and Data Structures spend significant amounts of time
on analyzing different algorithms and explaining the “Big O” notation. With each new
algorithm, students count the number of steps and do the prescribed formal manipulations
until they arrive at the right result. Discussion points are made about average and worst cases
and students dutifully learn the assigned tricks. Nevertheless, despite much talk about n2

versus n·log(n), students often do not know how much worse a BubbleSort of 10000 objects is
than a QuickSort. The students lack real experience with the algorithms and therefore have
only a shallow sense of the meaning of the analysis.

The problems with the traditional approach to analysis of algorithms in the freshman
computer science curriculum can be divided into two major categories: educational
weaknesses in the traditional mathematical approach and experiential weaknesses due to the
fact that the students have not worked with the algorithms for sufficient time and with
adequate depth.

The educational problems related to the traditional mathematical approach may be
summarized as follows:

• Each algorithm must be examined separately with attention to the particular details
of its implementation. No analytical method handles all algorithms for a given task
at once. Some simple algorithms are already too complex for complete analysis.

• The combinatorial mathematics used is complicated. Frequently, students must do
discrete mathematics in computer science courses which is more messy and requires
more special tricks than the mathematics taught in calculus courses being taken
concurrently. Students do not feel confident that they can do the mathematics on
their own.

• The simplifying assumption that all elementary operations take approximately the
same amount of time may not always be justified.

• The results of an analysis are usually stated as formulas: “Algorithm X is O(…)”.
Students do not have a strong sense for the impact of such formulas in real life.
Algebraic formulas are treated by students as collections of symbols to be
memorized but not deeply understood.

• It is difficult to make detailed comparison of algorithms for the same task with the
same “Big O” performance.

• Experimental results are undervalued. There is no detailed examination of the actual
time differences in performance as algorithms change or data sizes vary.

The experiential weaknesses of the traditional approach raise more fundamental questions
of what is the proper paradigm for the study of algorithms. Students who approach
algorithms from a purely mathematical viewpoint often do not have sufficient experience with
the algorithms to know their behavior and performance well. They may know that one
algorithm is “fast” and another is “slow” but they do not know how long either algorithm
takes on real data nor whether the difference matters in practice.

In contrast, an approach to algorithm analysis based on the methodology of science and
engineering would require that students first acquire experimental data by actually testing
algorithms and then make an assessment of that data. Such an approach should either verify
or contradict estimates of performance made by theoretical analysis or by heuristic guesses.
The resolution of contradictions between what happens and what was expected should be an
important component of the learning process. Students must determine if the contradictions
arise from mistakes in the analysis, bugs in the implementation, or subtle factors in the
hardware and operating system environment.

The use of experimental methods of data analysis is actually a more widely applicable skill
for students to learn than purely theoretical analysis. There are many problems and systems
in computer science which can only be studied by acquiring benchmark data and then
interpreting that data as the basis for further work. In the sciences, engineering, and social
sciences, the primary method for finding out about things is to make hypotheses, design
experiments, and acquire data that will confirm, modify, or deny the hypotheses. Theory is
but one ingredient in a complete analysis. It is important for students to learn how to
intelligently use the tools of data analysis: spreadsheets, statistical packages, visualization
software, and simulation tools.

An Experiential Approach to Algorithm Analysis

We will now illustrate our integrated approach to algorithm analysis using sorting
algorithms as the case study. Students generally work on this project about midway through
the Spring quarter of the freshman year. They have already been introduced to simple sorting
algorithms in an earlier course and have recently learned about QuickSort and HeapSort.

Students begin the study of sorting algorithms by running the animation program for
sorting. They explore all of the algorithms and learn that the algorithms which are fastest in
animation are SelectionSort, QuickSort, and MergeSort. HeapSort and ShellSort are about one-
third as fast as these algorithms. InsertionSort and BubbleSort are much, much slower than
the other algorithms. From the animations, students can already see why QuickSort is very
fast and why InsertionSort and BubbleSort are so slow. An interesting anomaly is that
SelectionSort is the fastest algorithm in animation although it is clearly an O(n2) algorithm from
a theoretical standpoint. This anomaly is a consequence of the high performance cost of
graphical swap operations in algorithm animation combined with the fact that SelectionSort
happens to require few swaps. For students, this anomaly is a puzzle to be explored during
the project.

When students are comfortable with how the algorithms work, they turn to a separate
“Time Trials” program to study raw performance. The Time Trials program is designed to
permit rapid and systematic accumulation of data about sorting performance. Students can
control the following options:

• How many different trials will be performed for each algorithm.
• What size data sets will be used in each trial.
• How the data sets will be arranged: randomly, in order, or in inverted order.
• What collection of algorithms will be tested.

The choice of data set size is simplified in the following manner. If a student selects 10 trials
with minimum data set size = 100 and maximum data set size = 1000, the program will make
the 10 data sets have sizes 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. This allows the
student to obtain performance data for linearly increasing data set sizes. For the special case
of the QuickSort algorithm, options are also provided to make a transition to InsertionSort or

SelectionSort when sorting small subranges of the data. Students learn that these variants run
slightly faster than the standard QuickSort algorithm.

The Time Trials program executes the trials, prints the performance data to the screen, and
asks if the student wishes to save the data to a file. If the student answers YES, the data is
saved in tab-delimited text format for easy import into a spreadsheet program. The Time
Trials program provides no analysis tools since it is expected that students will use a
spreadsheet program to perform analysis and create charts. An important message to
students is that they should learn to use high quality off-the-shelf software rather than
reinvent-the-wheel. In Table 1, a sample of data is shown together with some subsequent
analysis. Columns 1-2 were generated by the Time Trials program while Colums 3-5 were
added in the spreadsheet. Note that: 1 tick = 1/60 of a second.

Data Size 10000

Time Ticks Seconds Time Ratio

Bubble Sort 16625 277.08 536.29 Slowest
Double Bubble Sort 14597 243.28 470.87
Insertion Sort 5911 98.52 190.68
Selection Sort 6267 104.45 202.16
Shell Sort 61 1.02 1.97
Heap Sort 106 1.77 3.42
Merge Sort 91 1.52 2.94
Quick Sort #1 38 0.63 1.23
Quick Sort #2 37 0.62 1.19
Quick Sort #1 & Insertion (10) 31 0.52 1 Fastest
Quick Sort #2 & Insertion (10) 33 0.55 1.06
Quick Sort #1 & Selection (10) 34 0.57 1.1
Quick Sort #2 & Selection (10) 35 0.58 1.13

Table 1: Time Trial Data With Analysis

The table shows that the slowest algorithm, BubbleSort, takes 4 minutes and 37 seconds to
sort 10000 integers while the fastest sort, a variant of QuickSort, takes only slightly more than
half a second for the same task. The performance ratio is 536 to 1. During the acquisition of
this data, a student must wait impatiently for more than 12 minutes for BubbleSort and the
other slow sort algorithms to finish. Then, suddenly, the fast sorts all finish in a few seconds
combined. This experience drives home in an emphatic fashion the difference between an n2

and an n·log(n) algorithm.
The table shows that SelectionSort is really not as good as the animations suggest and that

the students must therefore explain the anomalous behavior in the animations. The table also
shows that ShellSort is solidly in second place behind the variants of QuickSort.

The Time Trials program allows students to create much more elaborate data tables in
which algorithms label the rows and the data sizes label the columns. Using such tables
students can create graphs which illustrate the changes in performance as the data size
increases.

The option to test sorts on data that is ordered or inverted allows students to examine
some issues of best and worst case behavior. InsertionSort is extremely fast on ordered data.
In contrast, one of the two QuickSort algorithms selects its pivot from the endpoint of the
sorting range. This variant of QuickSort has terrible performance on ordered data.

When students have finished the data collection and spreadsheet analysis, they must make
a report about what they have discovered. This effort forces them to explain in English how
the design of the various algorithms relates to their performance. We provide a set of rather

open-ended questions which mark a starting point for the report but do not constrain how the
student will develop the data and the analysis. Here is a sample of some of the questions:

Experiment 1.
Compare the different quicksort algorithms with varying data sizes, and determine which one is the
best for a given size. Document your experimentation and your findings with appropriate charts. Try
different subarray sizes for switching to selection or insertion sort and find the optimum.

Experiment 2.
Determine which of the algorithms are much worse than average, and which ones are much better,
when the input data is sorted or inverted. Again, document your findings using charts.

Experiment 3.
Compare all (most) of the algorithms on small size arrays (100 to 200). Do the same for arrays of sizes
in the range from 800 to 1000. Plot the two sets of results and observe the differences.

Write a summary of your findings - describing the good and bad points about different algorithms, what
you have learned, what was surprising, etc. Hand in your work typed, using word processor. You may
make the charts an integral part of your document or just print them separately. This assignment will
be graded for how professionally it is done, how much you tried to learn, and how well you designed
your experiments. We have talked about the complexity of some of the algorithms - see if the
experimental results correspond to our theoretical results.

Do the best you can. The most important points we will be looking for are the following:
Did you learn enough Excel to get meaningful charts.
Did you run enough experiments to get some meaningful results?
Did you learn anything about sorting algorithms from this lab?

Make sure we see what you learned from this lab.

As can be seen, students were given the responsibility for deciding what data sets to use in
the experiments and what data to collect. In addition, we intentionally did not provide careful
instruction in using a spreadsheet. Students did have some brief experience with a
spreadsheet earlier. They had to learn what they needed for this lab by experimentation and
asking questions. There are a large number of application packages that users learn best by
observing others and by asking questions. We want all of our students to feel that this can be
done. Students who are timid about using a new application without prior formal instruction
are at a great disadvantage in the technical world. By giving them encouragement to play
around and learn by doing, we encourage them to become more assertive in their use of
computers.

Student Results

The Sorting Lab was the most surprising among all that we tried last year. First of all,
students spent much more time on the lab than we anticipated. We compensated for it in the
grading, feeling the time was well spent. Students became very engaged, tried a much larger
number of cases than we planned, figured out several different ways in which to represent the
results in charts, and taught each other the different features of Excel. They were very serious
about producing professionally written reports. When the reports were finally handed in (it
took them about ten days to complete them) the results were beyond all expectations. To
illustrate what the students learned, we include some quotes from the lab reports and some
verbal comments made by students:

“I’ll never use BubbleSort again!”
“But the HeapSort cannot be 200 times faster than the InsertionSort!”
“A surprising aspect of the lab was the fluctuation of the graph with small range data. With some
thought, we soon determined that this phenomenon was caused by a lack of array size … Arrays of
larger size produced data which was much more stable and dependable.”
“One of the important aspects of the test of QuickSort is that when the switch size is small the
combination algorithms perform best overall … QuickSort1 & InsertionSort with a switch size of 10
proved to be the best in these tests.”
“Upon testing with sorted data, I found that the quickness of the algorithms changed drastically.
BubbleSort was still the slowest, but DoubleBubbleSort became the fastest and InsertionSort became the
second fastest. The three versions of QuickSort2 also changed drastically becoming three of the slowest
algorithms.”
“Anyway, here in this lab, I could learn Excel and Microsoft Word which I was afraid to use before even
though I knew how to use other spreadsheets and word processors. This lab was pretty helpful for
learning the usage of other software than we use for programming.”
“An important thing to learn from this lab is that any task can probably be done by a computer in many
different ways. Solving the problem is more than just getting a program to do its required task. Any
programmer should be able to produce the required output. The good programmer analyzes the problem
more thoroughly and finds the most efficient algorithm in terms of time and system resource use. A
program may even have two different algorithms to solve the same problem, depending on the type of
data.”

To illustrate what the students accomplished, it is also informative to show an example of
the kind of charts they prepared. See Figure 1.

Figure 1: Student Analysis of QuickSort Variants

Observations

We want to gather together some observations about what the students did and learned in
the Sorting Lab project and about why the structure of the project was really fruitful.

• The experimental approach to the analysis of the sorting algorithms permitted each
algorithm to be treated in exactly the same way: Simply run the algorithm and
record its performance.

• There was no need for the use of special mathematical tricks in the study of any of
the algorithms.

• The comparison between different versions of the QuickSort algorithm could not
have been done analytically. Students learned that it is often faster to run a series of
performance tests and that such tests can provide more precise comparative
information than a mathematical analysis.

• The comparison between small input data sets and large input data sets pointed out
differences that students often do not see. It provided a basis for discussing in class
the problem of determining when O(n2) is larger than O(n·log(n)) and permitted
students to see concretely that a simpler but slower algorithm may indeed be faster
for smaller data sets. The success of the combination algorithm, QuickSort &
InsertionSort, reinforced this message.

• The comment about HeapSort being 200 times faster than InsertionSort came from
a smart student, the type that learns everything easily. He never stopped to think
about what was the meaning behind all the analysis we had done. He could
reproduce all of the results but he never understood them deeply. It took the visual
jolt of the performance data and the graphs to make him see what we had been
trying to say for several weeks.

• The students learned that it is quite easy to write a driver to perform a series of time
comparisons for different algorithms. Although we supplied the Time Trials
program, the students had access to the source code and could see that there was no
particular magic in the code. The interface is clean, the timing of the algorithms is
straightforward, and the recording of the results to a file is easy. They know that
this is a method they can use in future work.

The discovery approach in this lab gave the responsibility for learning back to the students
and they were delighted to have this opportunity. Each of the ingredients in the project added
a new perspective towards an overall comprehension of the sorting algorithms. The
algorithm animations gave students a concrete appreciation of how the algorithms work. The
experience of collecting the performance data gave students a gut-level feeling for the relative
performance of the various algorithms. The numerical data and the graphs created in Excel
showed students that they could transform this gut-level understanding into something much
more precise. Finally, the experience of writing the reports provided students with a time for
synthesis and for a well-deserved sense of professional accomplishment.

Conclusions

The success of the Sorting Lab project suggests that such experiences should be much more
common in the computer science curriculum. Students need the opportunity to do projects in
which they can find out important things for themselves. They also need to know that they
have the freedom to use whatever tools and methods are fruitful. To plan a project, they can
use theory or mathematics or heuristics or past experience. If software is needed, they can
write their own or, often more effectively, use off-the-shelf tools such as spreadsheets.
Students also need to learn the necessity of adaption and modification since, as a project
progresses, it is often necessary to change plans and ask new questions.

In the introductory curriculum, there are many topics besides sorting algorithms which
lend themselves to this project approach: linked list manipulation, hashing methods, tree

balancing, graph traversal, and backtracking algorithms are all good examples. In the upper
level courses, many similar possibilities can be easily found. The important theme is to permit
students to get their minds, their eyes, and their hands focused on interesting problems where
they have a good chance of learning something really exciting.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, 1983.

[2] R. M. Baecker and D. Sherman, Sorting Out Sorting, 16mm color sound film, 30 minutes,
1981. (Shown at ACM SIGGRAPH ‘81 in Dallas, TX and excerpted in ACM SIGGRAPH
Video Review No.7, 1983.)

[3] C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Computer Science Learning Modules", 101
Success Stories of Information Technology in Higher Education: The Joe Wyatt
Challenge, Judith V. Boettcher, ed. McGraw Hill, 1993, pp. 274 -280.

[4] C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Instructional Frameworks: Toolkits and
Abstractions in Introductory Computer Science", Proceedings of ACM Computer Science
Conference, Indianapolis, IN, February 1993.

[5] C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Using Visual Feedback and Model Programs
in Introductory Computer Science", Journal of Computing in Higher Education, Fall
1992, Vol. 4(1), 3-26.

[6] C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Programming by Example and
Experimentation", Proceedings of the Fourth International Conference on Computers
and Learning (4th ICCAL), Acadia University, Wolfville, Nova Scotia, June 1992.

[7] M. H. Brown, Perspectives on Algorithm Animation, Proc. ACM SIGCHI ‘88 Conf. on
Human Factors in Computing Systems, April 1988, pp. 33-44.

[8] M. H. Brown and Robert Sedgewick, “Techniques for Algorithm Animation,” IEEE
Software, January 1985, Vol. 22, Vol. 2, No. 1, pp. 28-39.

[9] M. C. Linn and M. J. Clancy, The Case for Case Studies of Programming Problems,
Communications of the ACM, March 1992, Vol. 35, No. 3, pp. 121-132.

[10] T. L. Naps, Algorithm Visualization in Computer Science Laboratories, SIGCSE Bulletin,
February 1990, Vol. 22, No. 1, pp. 105-110.

[11] J. Robergé, Creating Programming Projects with Visual Impact, SIGCSE Bulletin, March
1992, Vol. 24, No. 1, pp. 230-234.

[12] J. T. Stasko, Tango: A Framework and System for Algorithm Animation, IEEE
Computer, September 1990, Vol. 23, No. 9, pp. 27-39.

[13] A. B. Tucker, Fundamentals of Computing I: Logic, Problem Solving, Programs, &
Computers, McGraw Hill, 1992.

[14] A. B. Tucker, et. al. (ed.), Computing Curricula 1991, Report of the ACM/IEEE-CS Joint
Curriculum Task Force, ACM Press, 1991.

