
Computer Science:

Designing Programs for High Schools

Viera Kr anová Proulx

College of Computer Science
Northeastern University

vkp@ccs.neu.edu

Pedagogy

Design Recipe

steps in the design process:

-- pedagogical intervention
-- self-regulatory learning

-- enforces documentation
-- enforces test first approach

Focus on Design

Design data hierarchies first

Design methods:
-- data driven
-- test first

Immutable data first
-- using structural recursion

Design of abstractions

Software: DrScheme

Language levels

 Scheme-like & ProfessorJ

Interactive environment

Targeted error-messages

Test design is supported 1

Computer Science:

Designing Programs for High Schools

Viera Kr anová Proulx

Northeastern University

vkp@ccs.neu.edu

2

Introduction

Introductory Informatics in the USA and the World
Principles vs. Artifacts

TeachScheme! and HtDC

Design Recipe

Programming Environment Support

Scaling Up

Conclusion

3

Introduction

Introductory Informatics in the World

Variety of curricula

Some countries more successful than others

Main concerns - make it relevant, yet not fashion driven

Bring Informatics to the level of Physics and Biology

USA is not the leader ...

4

Introduction

Introductory Informatics in the USA

• Local control of schools and curricula

• No nationwide certification of teachers

• CSTA - two years old

• The only common force: AP Curriculum

Keep up with the latest language and its features

Make sure it is compatible with 100 (bad) textbooks

Universal Introductory College Curriculum

No room for alternatives, innovation

Colleges and Universities -- same problems
5

Introduction

Principles vs. Artifacts

Designing a car:

• start with just the engine

• -- no gears

• -- no controls

• -- no steering

• -- no brakes

• -- no transmission

First understand the engine design well

6

Introduction

Principles vs. Artifacts

Learning to fly an airplane:

• start with just the simple flight control

• -- no take-offs

• -- no landings

• -- no high winds

• -- no fancy maneuvers

• -- one engine, or no engine

First understand the flight control well

7

Introduction

Principles vs. Artifacts

Learning to design a computer program:

• Start with the full scale commercial language

Syntax, complex constructs

Algorithms and Complex data

IDE e.g. Eclipse

I/O, GUIs, Events/Actions, Graphics

running, debugging, seeing the output, providing input

Student is confused from the beginning

8

Introduction

A Bit of History

Assembly Language Programming 15 years ago:

• Books focused on Vax, Motorola, Intel

• Details of a particular architecture -- No common principles

1994: Patterson & Hennessy: Computer Organization and Design

• End of language wars -- focus on the concepts

• Still relevant today -- even with the advances of architecture

Principles, not Artifacts

Written by top researchers
9

Introduction

What are the Principles of Computation?

Theory:

• Turing machines, Automata theory

state transitions - change the state of the world

• Church, Lambda calculus

functional approach: function consumes data, produces data

compositional: always known output for the given inputs

easier to understand, to test

programs follow the structure of data

Solid underlying theory -- preferred even for OO programming 10

Introduction

What Should we Teach?

Understand Computation

• represent information as data

• interpret data as information

• design operations that transform data

either imperative or functional

Design Programs

• convert reasoning about information, data, and data manipulation
into a working program

-- regardless of the language 11

Introduction

TeachScheme! and HtDC

Overview
Principles
Resources
Philosophy
Structure

Design Recipe

Programming Environment Support

Scaling Up

Conclusion

12

TeachScheme! and HtDC: Overview

TeachScheme!

• Introductory curriculum with over 10 years of experience

• Used in over 300 high schools in the USA

• First semester in universities

• Summer camp for high school students

• Book: How to Design Programs -- used in Mexico, Germany,
Poland, China...

free with online support at http://www.teach-scheme.org/

How to Design Classes (HtDC)

• builds on the TeachScheme! foundation --> OO design

• Java-like language -- over 4 years in the classrooms
13

TeachScheme! and HtDC: Overview

TeachScheme!

• Book: How to Design Programs -- used in Mexico, Germany,
Poland, China...

free with online support at http://www.teach-scheme.org/

How to Design Classes (HtDC)

• builds on the TeachScheme! foundation --> OO design

• Java-like language -- over 4 years in the classrooms

The team:

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt

Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx
14

TeachScheme! and HtDC: Principles

• Simple and Fun

Students program the actions, not I/O

• Design Discipline

Student learn to design systematically

• Solid Pedagogy

• Supporting Environment

Language levels - based on pedagogy

Tools: Interactions, Stepper, Test support

Libraries at the correct abstraction level

• Principles That Scale Up to the Real World
15

TeachScheme! and HtDC: Resources

Teacher Support for TeachScheme!

• Book: How to Design Programs free at
http://www.teach-scheme.org/

• Summer workshops for teachers

• New exercises online - with solutions (password protected)

• New libraries added

• Mailing list - help, discussions, online community

• Testimonials

16

TeachScheme! and HtDC: Resources

HtDC: Curriculum for program design using OO language

• Book: How to Design Classes under development

Preliminary version used in several schools

Expected completion - this summer

• Lecture notes, labs, exercises online

• ProfessorJ series of language levels

• Libraries for simple graphics, animation, events

• Curriculum tested in classrooms for four years

• Summer workshops for teachers

• Mailing list - help, discussions, online community

• Felleisen, Flatt, Findler, Gray, Krishnamurthi, Proulx

17

TeachScheme! and HtDC: Philosophy

Game of Pong

• Ball falling down - timer controlled

• Paddle moving left/right - key controlled

• Display the ball and paddle

• Detect out-of-bounds or collision

We need to represent the ball and the paddle

• But also:

Frame, canvas, timer

key listener, graphics, speed choice

Remember the car and airplane - focus on the key idea! 18

TeachScheme! and HtDC: Philosophy

Focus on the Principles

• How the ball moves

• How the paddle moves

• When do they collide

• How does the game start

• How does the game resume after ball is out of play

The rest is irrelevant to the program design for a novice

• Design the game logistics systematically

• Provide simple interface for user interactions

• Program the Model, not the View 19

TeachScheme! and HtDC: Philosophy

Focus on the Principles

• How do you represent information as data?

• How do you interpret data as information?

• What is the operation (function, method, action) you want to model?

• What information/data do you need to perform the action?

• What do you expect as the outcome of this operation?

• What are the sub-parts of the information/data the operation uses?

Compose all of the above into a program

• At the introductory level - like the game of Pong

Can be done with 13 year old children ...

In one week ...

20

TeachScheme! and HtDC: Structure

The Design Recipe: The Pedagogy

• Structured description of the design process

Program design is divided into steps

Questions to ask at each step

Clearly defined outcome for each step

Enforces test-driven design, documentation

• Pedagogy

Self-regulatory learning: independent learner

Pedagogical intervention

21

TeachScheme! and HtDC: Structure

The Language Levels

• Full programming language is too complex

Start only with the necessary language constructs

Motivate each additional construct with need

At each level provide user-appropriate feedback

Enforce constraints that are appropriate for the novice

• TeachScheme!

Scheme-like series of languages - own syntax

• How to Design Classes: ProfessorJ

Java-like series of languages
22

TeachScheme! and HtDC: Structure

The Programming Environment: DrScheme

• Language levels: Scheme-like and ProfessorJ

error messages designed for each language level

Scheme syntax adjusted for novices:

first car rest cdr define let

• Interactions window

• Stepper for Scheme languages

• Test support for ProfessorJ

23

Introduction

TeachScheme! and HtDC

Design Recipe

The Basics
Design Recipe for Data
Design Recipe for Functions/Methods

Programming Environment Support

Scaling Up

Conclusion

24

Design Recipe: The Basics

Design Recipe : the steps in the design process

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and
completeness

Pedagogical foundation:

• Self-regulatory learning:

Steps in the design process with clear goals, instructions on
how to reach the goals, and a way to assess success.

• Support for pedagogical intervention:

Instructor asks at which step the student is stuck - then follows
with the questions for that step.

25

Design Recipe: The Basics

Problem: Program design involves two complex tasks

the design of data and data hierarchies
the design of functions/methods to manipulate the data

Our solution: Designing data before designing functions

Design Recipe for data hierarchies

analyze the problem

represent the information as data

design the classes of data

define examples of instances of classes of data

interpret the data as information
26

Design Recipe: The Basics

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

27

Design Recipe: The Basics

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition - in (key)words

• A Shape is one of:

circle: given by a center point and the radius

square: given by the NW point and the size

combo: given by the top shape and the bottom shape

28

Design Recipe: The Basics

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition - in (key)words

• A Shape is one of:

Circle: given by a center Point and the radius

Square: given by the NW Point the size

Combo: given by the top Shape and the bottom Shape

29

Design Recipe: The Basics

Design recipe for designing classes:

The problem statement

we would like to paint geometric shapes -- circles, squares, and
combo-shape; see if they overlap and see if a point is inside a
shape ...

Data Definition - in (key)words

• A Shape is one of:

Circle: given by a center Point and the radius

Square: given by the NW Point the size

Combo: given by the top Shape and the bottom Shape

Design Recipe: class, containment, union, self-reference 30

Design Recipe: Designing Data

;; to represent a geometric shape
;; A Shape is one of
;; -- (make-circle Posn Number)
;; -- (make-square Posn Number)
;; -- (make-combo Shape Shape)

 (define-struct circle (center radius))
 (define-struct square (nw size))
 (define-struct combo (top bot))

Example:

 (define center (make-posn 100 100))
 (define c (make-circle center 50))

31

Design Recipe: Designing Data

Class diagram for the IShape class hierarchy:

Corresponds exactly to the narrative data definition

Students use the diagrams to represent the data definition

In Scheme Posn, in Java Point
32

Design Recipe: Designing Data

// to represent geometric shapes
interface IShape {
}

// to represent a circle
class Circle implements IShape {
 Point center;
 int radius;

 Circle(Point center, int radius){
 this.center = center;
 this.radius = radius;
 }
}

Code can be generated automatically

33

Design Recipe: Designing Data

Examples of Shape data

(define center (make-posn 100 100))
(define nw (make-posn 120 100))
(define c (make-circle center 50))
(define s (make-square nw 150))))
(define cs (make-combo c s))))

Translation of data into information:

s is a square with the nw corner at coordinates (120, 100),
width 150 and height 50

34

Design Recipe: Designing Data

Examples of IShape objects

// Examples of geometric shapes - in the Client class

Point center = new Point(100, 100);
Point nw = new Point(120, 100);

IShape c = new Circle(this.center, 50);
IShape s = new Square(this.nw, 150, 50);

IShape sc = new Combo(this.s, this.c);

Translation of data into information:

s is a square with the nw corner at coordinates (120, 100),
width 150 and height 50

35

Design Recipe: Designing Functions/Methods

Design Recipe : describes the steps in the design process

• Helps the student to work systematically

• Enforces good design discipline

• Build up complexity in parallel with the complexity of data

• Encourages to focus at one task per functions

Steps in the Design Recipe:

• Problem Analysis and Data Definition -- understand

• Purpose & Header -- interface and documentation

• Examples -- show the use in context: design tests

• Template -- make the inventory of all available data

• Body -- only design the code after tests/examples

• Test -- convert the examples from before into tests

36

Design Recipe: Designing Functions/Methods

The problem statement:

We need to find out whether a point is contained in a shape.

Design recipe for functions/methods: function/method contains

Step 1: Problem analysis and data definition

• The problem deals with two pieces of data -- the point and the
shape.

Point is a known class of data (Posn in Scheme, Point in
Java) with the fields x and y

Shape is represented by the class of data defined earlier.

• The function/method produces a boolean value true or false

37

Design Recipe: Designing Functions/Methods

Step 2: Purpose statement and the header

In Scheme: the function consumes a Posn (predefined) and a
Shape and produces a Boolean

 ;; does the given shape contain the given point?
 ;; Shape Posn -> Boolean
 (define contains (s p) ...)

In Java: the method is defined in the interface IShape (and all of the
classes that implement it). It is then invoked by an instance of a class
that implements the IShape interface. It consumes a Point and
produces a boolean value.

 // does this shape contain the given point?
 boolean contains(Point p);

38

Design Recipe: Designing Functions/Methods

Step 3: Examples

Show examples of the use of this function/method with expected
outcomes.

• In Scheme --- using the earlier examples of data:

(contains(make-posn 90, 110) c) ---> true
(contains(make-posn 90, 110) s) ---> false
(contains(make-posn 90, 110) sc) ---> true

• In Java --- using the earlier examples of data:

this.c.contains(new Point(90, 110)) ---> true
this.s.contains(new Point(90, 110)) ---> false
this.sc.contains(new Point(130, 110)) ---> true

Notice the use of this to refer to the instances that invoke the
method

39

Design Recipe: Designing Functions/Methods

Step 4: Template -- an inventory of available data

;; Shape Posn -> Boolean
(define contains (s p)
 ... (circle? s) ... ;; Boolean
 ... (circle-center s) ... ;; Posn
 ... (circle-radius s) ... ;; Number

 ... (square? s) ... ;; Boolean
 ...

 ... (combo? s) ... ;; Boolean
 ... (combo-top s) ... ;; Shape
 ... (combo-bottom s) ... ;; Shape
 ... (contains (combo-top s) p) ... ;; Booelan
 ... (contains (combo-bottom s) p)... ;; Boolean

 ... (posn-x p) ... ;; Number
 ... (posn-y p) ... ;; Number

40

Design Recipe: Designing Functions/Methods

Step 5: Function Body

;; Shape Posn -> Boolean
(define contains (s p)
 (cond
 [(circle? s)
 (<= (distance (circle-center s) p) (circle-radius s))]

 [(square? s)
 ...]

 [(combo? s)
 (or (contains (combo-top s) p)
 (contains (combo-bottom s) p)]))

Step 6: Tests

turn the examples into tests and evaluate them 41

Design Recipe: Designing Functions/Methods

Step 4: Template -- an inventory of available data

// in the class Circle
... this.center ... -- Point
... this.center.distTo(p)... -- int
... this.radius ... -- int
... p ... -- Point
... p.distTo(Point ...) ... -- int

// in the class Combo
... this.top ... -- IShape
... this.bottom ... -- IShape

... // does the top shape contain the given point?
... this.top.contains(p) ... -- boolean

... // does the bottom shape contain the given point?
... this.bottom.contains(p) ... -- boolean
... p ... -- Point

42

Design Recipe: Designing Functions/Methods

Design recipe for methods: method contains-- Part 3

Step 5: Function Body

// in the class Circle
boolean contains(Point p) {
 return this.center.distTo(p) <= this.radius;
}

// in the class Combo
boolean contains(Point p) {
 return this.top.contains(p)
 || this.bottom.contains(p);
}

Step 6: Tests

turn the examples into tests in the Client class and evaluate
them

43

Design Recipe: Designing Functions/Methods

Design Recipe : the steps in the design process:

• Problem Analysis and Data Definition -- understand

• Purpose & Header -- interface and documentation

• Examples -- show the use in context: design tests

• Template -- make the inventory of all available data

• Body -- only design the code after tests/examples

• Test -- convert the examples from before into tests

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and completeness

Opportunity for pedagogical intervention
44

Design Recipe: Designing Functions/Methods

Design Recipe : the steps in the design process:

• Problem Analysis and Data Definition -- understand

• Purpose & Header -- interface and documentation

• Examples -- show the use in context: design tests

• Template -- make the inventory of all available data

• Body -- only design the code after tests/examples

• Test -- convert the examples from before into tests

Design foundation:

• Required documentation from the beginning

• Test-driven design from the beginning

• Focus on the structure of data and the structure of programs
45

Design Recipe: Designing Functions/Methods

Example of a more complex problem students can solve:

• River with tributaries: pollution, lengths

• Binary trees: search trees, ancestor trees

• Drawing fractal curves: Sierpinski triangles, savannah trees

using our Canvas and graphics library

• Interactive games with timer and key events: Worm, UFO, Pong

using our World library

• Classes that represent Java programs: are the definitions valid

• Sorting lists, constructing sublists: easy tasks in our context

and more...
46

Introduction

TeachScheme! and HtDC

Design Recipe

Programming Environment Support

The Goals
DrScheme
Language Levels: HtDP
Language Levels: HtDC
Libraries: Graphics, Events, Timer, GUI, Web
Test Support

Scaling Up

Conclusion

47

Programming Environment Support

The Goals:

• Reduce the syntax to what is necessary

• Allow the student to focus on the key concepts

• Feedback / error messages at user's level of understanding

• Prevent misuse of advanced features

• Support a well documented test design

• Provide tools to understand program evaluation

Add new features when the need becomes compelling

48

Programming Environment Support

DrScheme

• Full scale, yet very simple environment

• Definitions window

• Interactions window

Exploratory interactions: examples of data, function application

Test outcomes

• Language choices

R5S5, EOPL, Swindle, MzScheme, MrEd, FrTime, ...

Beginner Scheme Languages

ProfessorJ Languages

• Wizards, tools, libraries to help in program design
49

Programming Environment Support

How to Design Program Languages

Beginning Student

• a pedagogical version of Scheme that is tailored for beginning
computer science students.

syntax forms that make the meaning clear

syntax forms that support clear program design

Beginning Student with List Abbreviations

• extends Beginning Student with convenient (but potentially
confusing) ways to write lists, including quasiquote.

50

Programming Environment Support

How to Design Program Languages

Intermediate Student

• adds local bindings and higher-order functions.

Intermediate Student with Lambda

• adds anonymous functions.

Advanced Student

• adds mutable state.

51

Programming Environment Support

ProfessorJ

• Definitions window

All class definitions in one file at the start

Libraries/packages provided and used

• Test support

Compare two objects for their contents, not identity

Summarize the test results and diagnostics

• Interactions window

Exploratory interactions: examples of objects, method
invocations

52

Programming Environment Support

ProfessorJ

• Wizards to eliminate mechanical typing tasks

• Language levels

Gradual increase in the complexity of the syntax and the
language features

Students see the need for new features before they are
introduced

• Library to support simple graphics and event programming

Copies the design of library for HtDP

Also available for commercial Java for easy transition

53

Programming Environment Support

ProfessorJ Language Levels

• Beginner Language: Classes & Methods

no mutation, static, access modifiers, loops, arrays,
overloading, inner classes, reflection

• Intermediate Language: Polymorphism & Abstraction

adds inheritance and overriding methods, casts, imperative
programs

• Advanced Language: Iterative programming & APIs

adds loops & arrays, access controls and packages,
overloading, static

• Full Language

No plans to implement - students move on to 'real world' 54

The Languages and the Environment

ProfessorJ in DrScheme

55

Introduction

TeachScheme! and HtDC

Design Recipe

Programming Environment Support

Scaling Up

Desinging Abstractions Systematically
Understanding Mutation
Understanding Program and Language Design

Conclusion

56

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

motivated by observing repeated code patterns

students are taught to design abstractions

57

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

motivated by observing repeated code patterns

students are taught to design abstractions

Designing abstractions: Design Recipe for Abstractions

Identify the differences between similar solutions

Replace the differences with parameters and rewrite the solution

Rewrite the original examples and test them again

58

Designing and Understanding Abstractions

Motivating abstractions

Abstracting over similarities:

Classes with similar data abstract classes/interfaces

Lists of different data list of <T> generics

Classes with similar structure and methods Abstract Data
Types

Comparisons interfaces that represent a function object

Traversal of a container iterator

59

Designing and Understanding Abstractions

Examples of abstractions

• Abstract classes: common fields, common concrete methods

• Generics: common structure of data

e.g. list of <T>

• Comparable, Comparator: common functional behavior

• Abstract Data Type
common functional representation of structures

add, remove, size, contains

• Iterators: abstracting over traversals

60

Understanding Mutation

Students are introduced to stateful programming when they already
can design quite complex programs.

• When is mutation needed

• What are the dangers of using mutation

• Designing tests in the presence of mutation

• The need for mutation:

Circularly referential data

ArrayList - the need for mutating a structure

GUIs - the need to record the current state - apart from the
current view

Efficiency - mutating sort and other algorithms 61

Understanding the Big Picture

The foundations are there for understanding full Java

• Study of the Java Collections Framework

• Understanding the meaning of Javadocs

• Foundations for reasoning about complexity

• Foundations for understanding the data structure tradeoffs

HashMap, Set, TreeMap, Linked structures

• Motivation for and using the JUnit

Students can understand other languages, their design and structure

62

Understanding User Interactions

Students programmed the model most of the time

They see a clear separation of programming the user interactions
from programming the behavior of the model

Tools to suport user interactions: Java Power Tools

• Clear abstractions for GUI elements design and layout

• Uniform way of reading input data from a variety of sources

• Support for data encoding for reading/writing

• Clear abstractions for event handling

• User interactions playground: Java Power Framework

Java Power Tools available at http://www.ccs.neu.edu/jpt/

63

Introduction

TeachScheme! and HtDC

Design Recipe

Programming Environment Support

Scaling Up

Conclusion

Our Experiences
Plans

64

Our Experiences: TeachScheme!

Over 300 high schools - student do well in following programming
courses

Girls are attracted and remain in the courses

Math skills are improved

Challenges and the room to progress for the best students

Weaker students do well - learn skills and succeed

Teachers are very happy

Web site:

http://www.teach-scheme.org

65

Our Experiences: HtDC

Instructors in follow-up courses feel students are
much better prepared

Very low attrition rate (<5%)

Students are much more confident in their understanding of program
design

Two very successful summer workshops for secondary school and
university teachers

Workshop planned for summer 2006

A growing number of followers despite the 'work in progress'

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html
66

Our Experiences: HtDC

A growing number of followers:

Northeastern University, University of Utah

University of Chicago, Worcester Polytechnic Institute

Worcester State College, Colby College

University of Waterloo, University of Washington

Knox College IL, Richard Stockton College, NJ

Weston High School, MA; Spacenkill High School, NY

Viewpoint High School, CA; Owatonna High School, MN

Omaha High School, NB; Oregon High School, WI

Web site:

http://www.ccs.neu.edu/home/vkp/HtDCH.html
67

Plans

• Expect to finish the HtDC textbook this year

• Plan to run one week workshops covering HtDP and HtDC for the
next three years in Utah, California, New York, and Massachusetts

• Lecture notes, solutions to exercise sets, more libraties

• Full support web site

• Online community - listserve

68

THANK YOU

ProfessorJ

Web sites:

http://www.teach-scheme.org

http://www.ccs.neu.edu/home/vkp/HtDCH.html

http://www.ccs.neu.edu/jpt
69

THANK YOU

ProfessorJ

Web sites:

http://www.teach-scheme.org

http://www.ccs.neu.edu/home/vkp/HtDCH.html

http://www.ccs.neu.edu/jpt
70

