Lab 3 (©2011 Viera K. Proulx

3 Understanding Equality

Note: This version of the lab follows the Lab 6 from Spring 2011 that deals
with the design of tests in the presence of mutation. Use the classes defined
in the Labé.zip file to work on this version of the lab.

Note: This material is covered in pages 321 - 330 in the textbook How to
Design Classes. Read it carefully.

We now want to define a method that will determine whether the given
account is the same as the given account. We may need such method to
find the desired account in a list of accounts.

Of course, now that we have the abstract class it would be easy to com-
pare just account number and the name on the account. But, maybe, we
want to make sure that the customer’s data match the data we have on
file exactly - including the balances, the interest rates, and the minimum
balances - as applicable.

The design of the method same is similar to the technique described in
the textbook. The relevant classes and examples that were handed out in
the class can be found in the file Coffee.java. You may want to look at the
code there as you work through this problem.

1. Begin by designing the method same for the abstract class Account

2. Make examples that compare all kinds of accounts - both of the same
kind and of the different kinds. For the accounts of the same kind
you need both the expected t rue answer and the expected false
answer. Comparing any checking account with another savings ac-
count must produce false.

3. Now that you have sufficient examples, follow with the design of
the same method in one of the concrete account classes (for example
the Checking class). Write the template and think of what data and
methods are available to us.

4. You will need a helper method that determines whether the given
account is a Checking account. So, design the method isChecking
that determines whether this account is a checking account. You need
to design this method for the whole class hierarchy - the abstract
class Account and all subclasses. Do the same to define the meth-
ods isSavings and isCredit.



2011 Viera K. Proulx Lab3
©

5. We are not done. This helps with the first part of the same method.
We need another helper method that tells Java that our account is
of the specific type. Here is the method header and purpose for the
checking account case:

// produce a checking account from this account
Checking toChecking();

In the class Checking the body will be just

// produce a checking account from this account
Checking toChecking () {
return this; }

Of course, we cannot convert other accounts into checking account,
and so the method should throw a Runt imeExcept ion with the ap-
propriate message. We need the same kind of method for every class
that extends the Account class.

6. Finally, we can define the body of the same method in the class Checking:]

// produce a checking account from this account
boolean same (Account that) {
if (that.isChecking()) {
return that.toChecking () .sameChecking(this);
} else {
return false;

}

That means, we still need the method sameChecking but this only
needs to be defined within the Checking class and can be defined
with a private visibility.

Finish this - with appropriate test cases.

7. Finish designing the same method for the other two account classes.



Lab 3 (©2011 Viera K. Proulx

Alternative approaches - bad and good

Note 1 - Incorrect alternative:
The method above can be written with two Java language features, the
instanceof operator and casting as follows:

// produce a checking account from this account
boolean same (Account that) {
if (that instanceof Checking) {
return ((Checking)that) .sameChecking(this);
} else {
return false;

However, this version is problematic and not safe.

If the class PremiumChecking extends Checking, then any object
constructed with a PremiumChecking constructor will be an instance of
Checking and the trouble that can result is illustrated in the example Test-
Same.java. You can make a simple project and run the examples, but we
include the output from the tester for illustration.

Note 2 - A correct alternative:

In the lecture we have introduced another version that also works cor-
rectly. It requires us to add a new method to the abstract class for
each class that extends the abstract class.

Lecture Notes for Lecture 16 from February 18th, 2010 posted on the
wiki show this technique for the classes that represent a list of books (ILoB,
Mt LoB, and ConsLoB.

Here the methods were:

// is this list of book the same as the given empty list of books?
public boolean sameMtLoB (MtLob that)

// is this list of book the same as the given nonempty list of books?
public boolean sameConsLoB (ConsLob that)



