
Lab 2 c©2011 Viera K. Proulx

2 The Variety of Unit Test Scenaria

The goal of this lab is to make you comfortable with designing unit tests
using the tester library and to become familiar with some of the test case
scenaria that the library supports.

2.1 Basic Practice

We will now focus on the design of methods and the design of tests as an
integral part of the method design.

Download the file GraphUSA.zip into a temporary directory, and un-
zip it. Start a new project GraphUSA. Highlight the project in the Project
Explorer and Import into the project all java files from the unzipped folder.

From your EclipseJars folder add to your project’s path the following
library files:

• tester.jar

• draw.jar

• geometry.jar

• colors.jar

Now run the project. It will show you a simple map of the 48 capitals of
the lower 48 US states, with a highlighted (circuitous) route from Alabama
to Maine. (Move the second Canvas over, then use the space bar to see the
route legs one at a time.)

We have written the code for drawing of the map. You may look at
what it entails - it is quite straightforward. Equally easy is the handling of
the interactive route display. What is missing in the code is a number of
tests. Your first task is to add at least some of the missing tests.

1. Add the tests for the method toPosn for the class Loc and for the
class City. You need to make sample data of the type Loc. My sug-
gestion is to take the locations of the first three cities, you can then
reuse the results for the tests for the first three cities.

2. Add the (inexact) tests for the method distanceTo for the class Loc
and for the class City. Here we can reuse the data for the three loca-
tions defined for the previous test.

1

c©2011 Viera K. Proulx Lab2

3. Add tests for the method listSize for the classes that implement
the ILoCity interface.

4. Add tests for the method concat for the classes that implement the
ILoCity interface. Here I would define two new routes, the first
chunk of the route from Alabama to Maine, and the second chunk,
then check that the concat method produces the whole route from
the two chunks. Make sure you add tests where either the object that
invokes the method or the argument to the method is the empty list.

5. Add tests for the method advance for the classes that implement the
ILoCity interface. Again, start by making three routes, the original
(I used one of the chunks from the previous test), then how it looks
with the first leg removed, then how it looks with one more leg re-
moved. Again, add a test that shows that nothing happens when we
try to get the next leg of an empty list.

6. Finally, add tests for the method onKeyEvent in the class GraphWorld.
At this point you may want to change the settings for running the
tests to Tester.runReport(e, false, false); so that only
the failed tests are reported. Again, we need sample data. Make
new GraphWorlds using the routes you have defined for the pre-
vious test.

There are a few things you may have noticed.

First, we have tested the entire behavior of an interactive program with-
out any additional scaffolding. The only part that was not properly tested
was the display, but even there, the ability to show the drawing on a stan-
dalone Canvas allowed us to check that the display contains all desired
items and that they are in the desired locations.

Next, we would like you to reflect how much did you learn about the
design of this program and its behavior by writing the tests.

Finally, notice that because every method produces new values, we
could create quite complex tests without excessive set-up and tear-down
steps and we could reuse the data we have defined in several tests, know-
ing that once defined, the data will not change.

2

Lab 2 c©2011 Viera K. Proulx

2.2 Special Test Scenaria

Managing Complexity: Using and Testing Helper Methods

We would like to give the user better information about the route. Rather
than just writing From AL to AK our text would give the distance to
travel and the direction of the travel, for example From AL to AK travel
451 miles traveling NW.

Design the method fromHereToThere that produces a String that
describes the route from this city to the given one. Replace the text in
the last line of the method drawLineToCity with the invocation of this
method.

We get you started. Here is what the method would look like if we did
not make any changes in the text that is displayed:

/**
* Produce a <code>String</code> that describes the route from

* this city to the given one

* @param that the given city

* @return a <code>String</code> that describes the route

*/
public String fromHereToThere(City that){

return "From " + this.state + " to " + that.state;
}

We hope that this example forces you to use helper methods, and forces
you to test the method that determines the direction very carefully. If you
get hopelessly stuck, ask for help, we may give you the solution (for the
method that determines the direction) and ask you to just design the tests
for it.

Testing for Exceptions

Our program should not go to the next leg of the path, if we have finished
our journey and the path is empty.

Start by adding the method isEmpty() to the classes that implement
the ILoCity interface.

Now modify the method advance so that if it is invoked on an empty
list it throws a new NoSuchElementExceptionwith an appropriate mes-
sage. (You will need to add import java.util.*; to your imports.)

Well, now our program fails. The first culprit is the test

t.checkExpect(this.mtlocity.advance(), this.mtlocity);

3

c©2011 Viera K. Proulx Lab2

We need to replace it with a test that verifies that the invocation of the
method advance by the empty list indeed throws the expected exception
and produces the expected message.

Replace this test case with the following:

t.checkException(
new NoSuchElementException(
"no next item in an empty list"),
this.mtlocity, "advance");

The first argument is the expected exception instance (with the expected
message it should provide), next is the object that invokes the method that
throws the exception, next is the name of the method. If the method invo-
cation consumes arguments, they are listed afterwards, separated by com-
mas.

Modify the test case by changing the message, the class of the exception,
the object that invokes the method, and the method name. Observe the
messages the tester library provides.

Now fix the code in the GraphWorld class, in the onKeyEventmethod,
so that it checks for empty path before it tries to advance.

Testing Value Within the Given Range

We now want to make sure that the city data is correct. We would like to
verify that the given latitude and longitude are indeed somewhere within
the bounds of 20 to 50 for the latitude and 65 to 125 for the longitude.

Our first step is to design a method that will adjust the given values so
that they would fall within the given bounds. (This is not a very realistic
example, and we’ll rectify it soon, but I am sure you can think of other
examples where the outcome of a given method may not be known exactly,
but we expect it to fall within the given range.)

1. Design the method adjustData for the Loc class that consumes
an integer value and two bounds (lower and upper) and produces
a value within the given range as follows: if the given value is too
low, it produces the lower bound, if the given value is too high, it
produces the upper bound, otherwise it just returns the given value.

2. Add new tests for your method that only verify that the resulting
value is within the given range. (Of course, you had the tests for out-
of-bounds at each end, the boundary cases, and a case with the value in the
middle.) Use the checkRange method in the tester library.

4

Lab 2 c©2011 Viera K. Proulx

Note: This is a helper method that does not have the word this in its
purpose statement. This means that the method does not use any informa-
tion provided by the instance of this class. In full-scale Java this would be
a static method, but we do not burden students with these details early
on. We do mention that there is something different about this method.

We will not use this method - instead, we will only worry about the
constructors for the Loc class.

Testing the Constructors

Now we change the constructor for the Loc class, and instead of adjusting
the incorrect values, it will throw an exception, indicating which of the
values was incorrect.

We can do this directly in the constructor, or we can again use a helper
method checkCoordinates that just throws a RuntimeException if
the given coordinates are not valid.

Look up the tester method checkConstructorException.

Testing One-Of Values

If you still have some time (and energy) left, look at how we can test whether
the expected value is one of several choices. We return to the Shapes project
from Lab 1.

1. Design the method that produces a new CartPt moved a random
distance from the current location, no further than 1 pixel in any di-
rection. So, the new CartPt will have the x coordinate equal to one
of x− 1, x, x + 1, and the y coordinate one of y− 1, y, y + 1.

The following should help you — expand it to check that the newly
moved CartPt is indeed built correctly.

import java.util.*;
...

Random rand = new Random();

// test that we produce one of possible three numbers
void testOneOf(Tester t){

t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);
t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);
t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);
t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);
t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);
t.checkOneOf(1 - this.rand.nextInt(3), -1, 0, 1);

}

5

