
Lab 10 c©2011 Viera K. Proulx

10 Randomized Testing: QuickCheck

We now address the situation when we need to measure the performance
of one program under a number of different circumstances. To get such
measurements we need to run the program a large number of times on
different data. Here the right approach is randomized tests.

Randomized tests run the test of some property of a program a large
number of times on different data that is automatically generated. In order
to be able to generate large number of random instances of a given type,
we need a little bit of help.

The QuickCheck for Java library is one such tool.
Start a new project and download the files from the TesterQuickCheck.zip.

Add to the project build paths both the tester.jar and quickcheck-0.6.jar.

A Simple Example

Open the file Person.java
We would like to check that when we define a class Person with two

fields, String first, String last, and add methods getFirst and
getLast, these methods will produce the correct values.

Here is the class Person:

class Person {
private String first;
private String last;

public Person(String first, String last) {
this.first = first;
this.last = last;

}

public String getLast() { return last; }
public String getFirst() { return first; }

}

Our test in the Examples class would be something like this:

public void testPerson(Tester t){
Person johndoe = new Person("John", "Doe"):
t.checkExpect(

johndoe,
new Person(johndoe.getFirst(),

johndoe.getLast()));
}

1

c©2011 Viera K. Proulx Lab10

We have one test case. To make a new one, we need to come up with
new first and last name and run a similar test again. The quickcheck library
helps us here. It contains classes that generate random data for all primitive
types. To generate a random String, we first define an instance of the
primitive type generator for Strings, then ask for the next instance of
this type of data:

Generator<String> name = PrimitiveGenerators.strings();

We can now create a new instance of the class Person by providing to
the constructor two new names as follows:

Person person = new Person(this.name.next(), this.name.next());

To generate an unlimited number of new instances of the class Person
we include this code in the class PersonGenerator that implements the
net.java.quickcheck.Generator<Person> interface. It has to de-
fine the method next that produces an instance of the type Person. Here
is the complete class definition:

// the class that generates random instances of the Person class
class PersonGenerator

implements net.java.quickcheck.Generator<Person>{
Generator<String> name = PrimitiveGenerators.strings();

@Override public Person next() {
return new Person(name.next(), name.next());

}
}

Our test will then be similar to the one above:

t.checkExpect(
person,
new Person(person.getFirst(),

johndoe.getLast()));

However, the following code allows us to repeat this test 200 times. It
includes a statement that prints the generated Strings, so we can see what
the data looks like.

public void testPerson(Tester t){
System.out.println("Starting at 0");
int i = 0;

2

Lab 10 c©2011 Viera K. Proulx

for(Person name : Iterables.toIterable(new PersonGenerator())){
System.out.println(i + ": " + name.getFirst() +

" ... " + name.getLast());
t.checkExpect(

name,
new Person(name.getFirst(),

name.getLast()));
i++;

}
}

Look at the file Person.java and run the program. Look at the output –
there are 200 test cases that have been run.

Generating one of several possible Values

Open the file PersonPet.java. We have extended the definition of the person
to include the person’s pet, but we allow only three kinds of pets: dogs,
cats, and gerbils.

The class diagram for the class PersonPet is this:

+--------------+
| PersonPet |
+--------------+
| String first |
| String last |
| Pet pet |--+
+--------------+ |

|
+---------+
|
v

+-------------+
| Pet |
+-------------+
| String name |
| String kind |
+-------------+

However, we restrict the pet kinds, and so we do not want to generate
random kinds of pets, only one of three possible choices. The EnsuredValuesGenerator
will generate only one of the possible several values as follows:

Collection<String> petkinds =
Arrays.asList("cat", "dog", "gerbil");

Generator<String> petkind =
new EnsuredValuesGenerator<String>(this.petkinds);

3

c©2011 Viera K. Proulx Lab10

Every time we invoke the method petkind.next() we will get one
of the three possible Strings: "cat", "dog", or "gerbil".

Run the code for the file PersonPet.java and make sure you under-
stand what is going on.

Generating integers within the given range

Let us now look at the classes in the file Shapes.java. We would like to
generate new shapes, but would like them to represent objects within the
bounds of our Canvas. The file ShapeGenerators.java shows us how this can
be done:

class CartPtGenerator implements net.java.quickcheck.Generator<CartPt>{

Generator<Integer> horizontal;
Generator<Integer> vertical;

CartPtGenerator(){
this(400, 200);

}

CartPtGenerator(int w, int h){
this.horizontal = new IntegerGenerator(0, w);
this.vertical = new IntegerGenerator(0, h);

}

@Override public CartPt next() {
return new CartPt(horizontal.next(), vertical.next());

}
}

We see that the IntegerGenerator provided by the quickcheck library
allows us to specify the bounds for the values of the integers it generates.

Read through the rest of the code, run it, and make sure you understand
what is going on.

Exercise

We are now ready to see the real power of the randomized tests. Design
the method moveRandom in the class CartPt that produces a new point
moved by at most one pixel in any direction.

Now design a test that will check 200 times whether invoking the method
moveRandom on an instance of CartPt produces a desired result.

4

Lab 10 c©2011 Viera K. Proulx

Note 1: A lot of work goes into designing randomized tests. First we have
to be able to generate data of the desired type. Next we need to understand
and be able to define formally, as code, how the expected values relate to
the object that invoked the method. We then need to have the testing sup-
port (such as the tester library, or JUnit) that will evaluate the tests and
report the results. We then need to design the method that repeats the gen-
eration of the object to be involved in the test, the method invocation, and
the testing of the outcome of the test invocation. And, of course, we need
to run the tests.

Note 2: We have only recently started working with the quickcheck library.
We discovered with a great surprise, that we are now able to easily generate
such a large number of tests that the results do not fit within the Console
window. We plan to add a new feature to the tester library that will save
the test results to a file for reading later, or in some other way remedy this
problem.

5

