
Lab 4 c©2008 Felleisen, Proulx, et. al.

4 Methods for Classes, Containment, Unions

In this lab we will focus on designing methods for different kinds of class
hierarchies.

Do as many of these exercises as you need to feel comfortable with the
material.

4.1 Methods for Simple Classes and Classes with Containment

For this series of exercises use the classes from Lab 3 that represented photo
images and included the time information. We also add the date when the
picture has been taken. The class diagram will be as shown. You need to
modify your data definitions and examples to include the Date class:

+----------------+
| Photo |
+----------------+
| String name |
| String kind |
| int width |
| int height |
| int bytes |
| Date date |--------------------+
| ClockTime time |-+ |
+----------------+ | |

v v
+------------+ +------------+
| ClockTime | | Date |
+------------+ +------------+
| int hour | | int year |
| int minute | | int month |
+------------+ | int day |

+------------+

Recall some examples of the information we wish to represent:

• Picture of a river (jpeg) that is 3456 pixels wide and 2304 pixels high,
using up 3,614,571 bytes

— taken on September 23, 2007 at 9:50 am.

• Picture of a mountain (jpeg) that is 2448 pixels wide and 3264 pixels
high, using up 1,276,114 bytes

— taken on November 11, 2007 at 11:30 am.

1

c©2008 Felleisen, Proulx, et. al. Lab 4

• Picture of a group of people (gif) that is 545 pixels wide and 641 pixels
high, using up 13,760 bytes

— taken on November 11, 2007 at 9:30 pm.

• Picture of a plt icon (bmp) that is 16 pixels wide and 16 pixels high,
using up 1334 bytes

— taken on September 23, 2007 at 11:30 pm.

You can work with these data definitions, or, if you have used different
names in the previous lab, you can use the code from that lab, as long as
you can represent all the information given in the examples.
Note: Make sure you understand the data definitions, can translate these
examples to data, and conversely, translate any instance of data defined for
these classes into the information the data represents.

Design Recipe for a simple method definition

Recall from the lectures that in a class based language every method is de-
fined in a class that is most relevant, it is then invoked by the instance of
that class, and this instance becomes the first argument for the method.

Below is an example of the design of a method that computes the num-
ber of pixels in a photo image:

• Step 1: Problem analysis and data definition.

The method deals with Photos and so it needs to be defined in the
class Photo. Each instance of a Photo has all the information we
need to solve the problem - we do not need any additional data to be
given. The result is an integer.

We will use the following data in our examples. For your work add
at least one more instance of each class.

// Examples for the class ClockTime
ClockTime ct1 = new ClockTime(21, 50);
ClockTime ct2 = new ClockTime(11, 30);
ClockTime ct3 = new ClockTime(9, 50);

// Examples for the class Date
Date d1 = new Date(2007, 9, 23);
Date d2 = new Date(2007, 11, 7);
Date d3 = new Date(2007, 9, 25);

2

Lab 4 c©2008 Felleisen, Proulx, et. al.

// Examples for the class Photo
Photo river =
new Photo("River", "jpeg", 3456, 2304, 3614571,

this.d1, this.ct3);
Photo mountain =
new Photo("Mountain", "jpeg", 2448, 3264, 1276114,

this.d2, this.ct2);
Photo people =
new Photo("People", "gif", 545, 641, 13760,

this.d2, this.ct1);
Photo icon =
new Photo("PLTicon", "bmp", 16, 16, 1334,

this.d1, this.ct2);

• Step 2: The purpose statement and the header.

// to compute the number of pixels in this photo
int pixels(){...}

• Step 3: Examples.

people.pixels() ---> 349345
icon.pixels() ---> 256

• Step 4: The template.

int pixels(){
... this.name ... --- String
... this.kind ... --- String
... this.width ... --- int
... this.height ... --- int
... this.bytes ... --- int
... this.date ... --- Date
... this.time ... --- ClockTime

We will only need this.width and this.height.

• Step 5: The method body.

3

c©2008 Felleisen, Proulx, et. al. Lab 4

// to compute the number of pixels in this photo
int pixels(){
return this.width * this.height;

}

• Step 6: Tests.

ProfessorJ provides a special way of running the tests. A check ex-
pression

check test method invocation expect expected test result

produces the test result as a boolean value and all test results are
reported in a separate display. The following code:

// Tests for the method pixels:
boolean testPixels =

(check this.people.pixels() expect 349345) &&
(check this.icon.pixels() expect 256);

shows the tests for our method.

1. Design the method timeToDownload that determines how long it
will take to download this image, if we know the number of bytes we
can download in one second.

2. Design the method takenBefore that determines whether this pic-
ture was taken before another picture.

Remember: One task, one method. Make each class responsible for
its data.

3. In the class ClockTime design the method that advances the time by
the given number of minutes. Use helper methods as needed.

4.2 Methods for Unions

For this part use the data for camera shots (photos or videos) from the pre-
vious lab. When designing methods for unions, we first need to define
the purpose and the header in the interface that represents the union,
then work on designing the method body in each class that implements the
interface following the design recipe.

4

Lab 4 c©2008 Felleisen, Proulx, et. al.

1. Design the method timeToDownload that determines how long it
will take to download this shot, if we know the number of bytes we
can download in one second.

2. Design the method takenOn that determines whether this shot has
been taken on a given day.

4.3 Methods for Self-Referential Data

We continue with the the theme of the photo images. Our goal is to design
methods that answer questions about list of images and manipulate these
lists.

We will also work with the geometric shapes and learn to draw their
images on the Canvas.

In the previous lab you designed a list of photo images. We first design
the method that counts the images in our list. (We use the simpler version
of the class Photo that was defined in Lab 1.)

Note: Of course, you will quickly realize that this method will look the
same regardless of what are the pieces of data contained in the list. We will
address that issue later on, once we are comfortable with dealing with lists
that contain specific items.

Recall that the class diagram for a list of photo images looked as follows:

5

c©2008 Felleisen, Proulx, et. al. Lab 4

+--------------+
| IListOfPhoto |<----------------+
+--------------+ |
+--------------+ |

| |
/ \

------------------------ |
| | |

+---------------+ +-------------------+ |
| MTListOfPhoto | | ConsListOfPhoto | |
+---------------+ +-------------------+ |
+---------------+ +-| Photo first | |

| | IListOfPhoto rest |----+
| +-------------------+
v

+----------------+
| Photo |
+----------------+
| String name |
| String kind |
| int width |
| int height |
| int bytes |
+----------------+

Design Recipe for a method definition for unions of data

Below is an example of the design of a method that counts the number of
pictures in a list of photo images.

The method deals with IListOfPhotos. We have defined an inter-
face IListOfPhotos and also two classes that implement the interface,
MTListOfPhotos and ConsListOfPhotos. When the DESIGN RECIPE

calls for the method purpose statement and the header, we include the pur-
pose statement and the header in the interface IListOfPhotos and in all
the classes that implement the interface.

Including the method header in the interface serves as a contract that
requires that all classes that implement the interface define the method with
this header. As the result, the method can be invoked by any instance of a
class that implement the interface - without the need for us to distinguish
what is the defined type of the object.

We can now proceed with the DESIGN RECIPE.

• Step 1: Problem analysis and data definition.

6

Lab 4 c©2008 Felleisen, Proulx, et. al.

The only piece of data needed to count the number of elements in a
list is the list itself. The result is an integer.

We will use the following data in our examples. For your work add
at least one more instance of each class.

// Examples for the class Photo
Photo river =
new Photo("River", "jpeg", 3456, 2304, 3614571);

Photo mountain =
new Photo("Mountain", "jpeg", 2448, 3264, 1276114);

Photo people =
new Photo("People", "gif", 545, 641, 13760);

Photo icon =
new Photo("PLTicon", "bmp", 16, 16, 1334);

IListOfPhotos mtlist = new MTListOfPhotos();
IListOfPhotos list1 =
new ConsListOfPhotos(this.river, this.mtlist);

IListOfPhotos list2 =
new ConsListOfPhotos(this.mountain,
new ConsListOfPhotos(this.people,
new ConsListOfPhotos(this.icon, this.mtlist)));

• Step 2: The purpose statement and the header.

// to count the number of pictures in this list of photos
int count(){...}

In the interface IListOfPhotos we write:

// to count the number of pictures in this list of photos
int count();

indicating there is no definition for this method.

We now have to design the method separately for each of the two
classes.

• Step 3: Examples.

We make examples for the empty list, a list with one element and a
longer list:

7

c©2008 Felleisen, Proulx, et. al. Lab 4

mtlist.count() ---> 0
list1.count() ---> 1
list2.count() ---> 3

• Step 4: The template.

We need to look separately at the two classes that implement the
method.

class MTListOfPhotos: The class has no member data and there
is no other data available. It is clear that the method will always pro-
duce the same result, the value 0.

We can finish the steps 4. and 5. right away — the method body
becomes:

// to count the number of pictures in this list of photos
int count() {
return 0;

}

We now look at the template for the class ConsListOfPhotos. It
includes the two fields, this.first and this.rest. However,
just as in HtDP, we recognize that this.rest is a data of the type
IListOfPhotos and so it can invoke the method count that is now
under development. The template then becomes:

class ConsListOfPhotos

int count(){
... this.first ... --- Photo
... this.rest ... --- IListOfPhotos

... this.rest.count() ... --- int

Recall the purpose statement for the method count:

// to count the number of pictures in this list of photos

To understand what is going on, you should read aloud the purpose
statement for the invocation of the method this.rest.count() as
follows:

8

Lab 4 c©2008 Felleisen, Proulx, et. al.

// to count the number of pictures
// in the rest of this list of photos

When designing methods for self-referential data, reading out loud
(or at least making sure you understand clearly) the purpose state-
ment as applied to the self-referential method invocation helps you
to use it when designing the method body.

• Step 5: The method body.

We have designed the method body for the class MTListOfPhotos.
In the class ConsListOfPhotos the method body is:

// to count the number of pictures in this list of photos
int count(){
return 1 + this.rest.count();

}

• Step 6: Tests.

We can now convert our examples into tests:

// Tests for the method count:
boolean testPixels =

(check this.mtlist.count() expect 0) &&
(check this.list1.count() expect 1) &&
(check this.list2.count() expect 3);

Design the methods that will help you in dealing with your photo col-
lection:

1. Before burning a CD of your photos, you want to know what is the
total size in bytes of all photos in the list of photos. The method
totalSize should help you. Design it.

2. You now want to go over the list of photos and select only the photos
in the jpeg format. Design the method onlyJpeg to help you with
this task.

3. Finally, you want to sort the list of photos by the name of the image
(as typically these are generated by your camera and represent the
date and time when the photo was taken). Of course, you design the
method sortByDateTime.

Note: If you are running out of time, sort only by date.

9

c©2008 Felleisen, Proulx, et. al. Lab 4

4.4 More Methods for Self-Referential Data
Graphics

Recall the definitions of classes that represent different geometric shapes -
a circle, a square, and a shape that is a combination of two shapes, the top
and the bottom one. The data definition is given by the class diagram:

+-------+
| Shape |<------------------------+
+-------+ |
+-------+ |

| |
/ \

--------------------------------------- |
| | | |

+-------------+ +-------------+ +--------------+ |
| Square | | Circle | | Combo | |
+-------------+ +-------------+ +--------------+ |

+-| Posn nw | +-| Posn center | | Shape top |--+
| | int size | | | int radius | | Shape bottom |--+
| | Color color | | | Color color | +--------------+
| +-------------+ | +-------------+
+----+ +-----------+

| |
v v

+-------+
| Posn |
+-------+
| int x |
| int y |
+-------+

1. Design the method totalArea that computes the total area of this
shape. For the shape that consists of two components add the areas -
as if you were measuring how much paint is needed to paint all the
components.

You will need to use math functions, such as square root. The follow-
ing example show how you can use the math function, and how to
test doubles for equality. (You can only make sure they are different
only within some given tolerance.)

class Foo{
double x;

10

Lab 4 c©2008 Felleisen, Proulx, et. al.

Foo(double x){
this.x = x; }

double squareRoot(){
return Math.sqrt(this.x); }

}

class Examples {
Examples () {}

Foo f = new Foo(16.0);

boolean testSquared =
check this.f.squareRoot() expect 4.0 within 0.01;

}

2. Design the method moveBy that produces a new shape moved by the
given distance in the vertical and horizontal direction.

3. Design the method isWithin that determines whether the given
point is within this shape.

4. Of course, we would like to draw the shapes on a canvas. Design the
method drawShape that draws this shape on the given Canvas.
The following code (that can be written within the Examples class)
shows how you can draw one circle:

import draw.*;
import colors.*;
import geometry.*;

class Examples{
Examples() {}

Canvas c = new Canvas(200, 200);

boolean makeDrawing =
this.c.show() &&
this.c.drawDisk(new Posn(100, 150), 50, new Red());

}

The three import statements on the top indicate that we are using
the code programmed by someone else and available in the libraries
named draw, colors, and geometry. Open the Help Desk and look

11

c©2008 Felleisen, Proulx, et. al. Lab 4

under the Teachpacks for the teachpacks for How to Design Classes to
find out more about the drawing and the Canvas.

12

