Design Recipe Worksheet

	1. Problem Statement -- Data Definitions

Identify all information needed to solve the problem, as well as the expected results.

Represent all information as data.

Make examples of data that may be used to invoke this method, and that may be its results.

Decide which object should be responsible for solving the problem --- this will be the class where the method is defined.

	2. Purpose and Header
Write a succinct purpose statement.

Use 'this' to identify the object that invokes the method.

Use 'given' to identify all data provided to the method as arguments.

Design the method header. This represents a contract for this method.

	3. Examples of Data

Make examples of the use of this method together with the expected results for each method invocation.

	4. Template / Inventory

Include in the inventory the following:

-- all fields in the class that invoked the method

-- all method in this class

-- for each field and for each argument

 -- all methods defined for its type

For every entry in the Inventory specify its type.

	5. Body

Design the method body.

	6. Tests

Convert all examples into a working test suite. Give the test suite a name that identifies the class and the method that is being tested.

If necessary, add more tests to create a complete code coverage.

Sample Design Recipe Worksheet

	1. Problem Statement -- Data Definitions

Compute the quality points for the grade in a student's record

Class GradeRecord - as shown below - has the information we need - the grade given and the number of credits. The result will be a double.

 +--------------+

 | GradeRecord |

 +--------------+

 | int number |

 | String title |

 | int credits |

 | double grade |

 +--------------+
Sample data:

GradeRecord fund = new GradeRecord(211, "Fundamentals", 4, 3.66);

GradeRecord ovw = new GradeRecord(220, "Overview", 1, 4.0);

GradeRecord algo = new GradeRecord(690, "Algorithms", 4, 3.0);

	2. Purpose and Header
// in the class gradeRecord:

// compute the quality points a student earned based on this grade record

double qPoints()...

	3. Examples of Data

fund.qPoints() should be --> 14.64

ovw.qPoints() should be --> 4.0

algo.qPoints() should be --> 12.0

	4. Template / Inventory

 ... this.number ... -- int

 ... this.title ... -- String

 ... this.credits ... -- int

 ... this.grade ... -- double

	5. Body

return this.grade * this.credits;

	6. Tests

// test the method qPoints:

 boolean test1 = check this.fund.qPoints() expect 14.64 within 0.01;

 boolean test2 = check this.ovw.qPoints() expect 4.0 within 0.01;

 boolean test3 = check this.algo.qPoints() expect 12.0 within 0.01;

Complete code:

// to represent a grade record on a transcript

class GradeRecord {

 int number;

 String title;

 int credits;

 double grade;

 GradeRecord(int number, String title, int credits, double grade) {

 this.number = number;

 this.title = title;

 this.credits = credits;

 this.grade = grade;

 }

/* TEMPLATE:

 ... this.number ... -- int

 ... this.title ... -- String

 ... this.credits ... -- int

 ... this.grade ... -- int

 ... this.qPoints() ... -- double

*/

 // compute the quality points a student earned based on this grade record

 double qPoints(){

 return this.grade * this.credits;

 }

}

class ExamplesGradeRecord{

 ExamplesGradeRecord() {}

 GradeRecord fund = new GradeRecord(211, "Fundamentals", 4, 3.66);

 GradeRecord ovw = new GradeRecord(220, "Overview", 1, 4.0);

 GradeRecord algo = new GradeRecord(690, "Algorithms", 4, 3.0);

 // test the method qPoints:

 boolean test1 = check this.fund.qPoints() expect 14.64 within 0.01;

 boolean test2 = check this.ovw.qPoints() expect 4.0 within 0.01;

 boolean test3 = check this.algo.qPoints() expect 12.0 within 0.01;

}

