9 Homework

Due: Wednesday, December 5, 2007.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, whic problems are to be graded for extra credit, and which problems you did not attmept. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	\ldots
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	\ldots

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 4 of the following 5 problems
Points: 25 points per problem

1. a Show that \mathbf{P} is closed under complement and concatenation.
b Let A be a decidable language and let D be a polytime decider for it. Consider the following algorithm for deciding whether a given non-empty string s of length n belongs to A^{*} : For every possible way of splitting s into non-empty substrings $s=$ $s_{1} s_{2} \ldots s_{k}$, run D on each substring s_{i} in that split and accept iff all substrings are accepted by D for some split. Derive an exact
expression for how many possible such splits there are as a function of $n=|s|$. Use this to conclude that this algorithm does not run in polynomial time, even though D does.
c What does the result of part b imply about the closure of \mathbf{P} under the star operation?
2. Do the Problem 7.10
3. Do the Problem 7.12
4. Do the Problem 7.23
5. Do the Problem 7.25
