7 Homework

Due: Monday, November 19, 2007.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, whic problems are to be graded for extra credit, and which problems you did not attmept. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	\ldots
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	\ldots

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 7 problems
Points: 20 points per problem

1. - Prove that the collection of decidable languages is closed under concatenation and star.

- Prove that the collection of Turing-recognizable languages is closed| under concatenation and star.

For this problem, give only informal high-level description of any required Turing Machines. Hint: You may find it helpful to use nondeterministic and/or multi-tape Turing Machines.
2. Given an arbitrary Turing machine (or Turing machine variant) M, let M^{\prime} be the same machine but with the accept and reject states swapped.I Is it possible that there exists strings accepted by:
i both M and M^{\prime}; or
ii neither M nor M^{\prime};
when
a M is a (deterministic) decider?
b M is a (deterministic) recognizer?
c M is a (nondeterministic) decider?
d M is a (nondeterministic) recognizer?
Note that 8 answers are required. Justify all answers.
3. Do the Problem 4.2

- Do the Problem 4.12

4. Do the Problem 4.3
5. Do the Problem 4.4
6. Prove that $O N E_{D F A}=\{<D>\mid D$ is a DFA and $|L(D)|=1\}$ is decidable.
7. Do the Problem 4.26
