3 Homework

Due: Wednesday, October 3, 2007.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, whic problems are to be graded for extra credit, and which problems you did not attmept. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	\ldots
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	\ldots

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 7 problems
Points: 20 points per problem

1. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:

- eliminating first state 3 , then state 2 , then state 1
- eliminating first state 1 , then state 2 , then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \varnothing in unions and all instances of ϵ in concatenations.
2. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:

- eliminating first state 3 , then state 2 , then state 1
- eliminating first state 1 , then state 2 , then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \varnothing in unions and all instances of ϵ in concatenations.
3. Use the pumping lemma to show that the following languages are not regular.
(a) $\left\{w \mid w=a^{k} b a^{k}\right.$ for any $\left.k \geq 0\right\}$
(b) $\left\{w \mid w=a^{i} b^{j} c^{k}\right.$ where $i, j, k \geq 0$ and either $i=j$ or $\left.i=k\right\}$
4. Do Problem 1.46(c, d).
5. Do Problem 1.55, but for the following languages:
(a) $a b^{*} a$
(b) $a a b \cup a^{*} b^{*}$
(c) $(a b a b)^{*}$
(d) ϵ
(e) $a b a b a$
(f) $a^{*} b b b a^{*}$
6. (a) Do Problem 1.47
(b) Do Problem 1.48
7. Prove or disprove the following:
(a) Every subset of a regular language is a regular language
(b) Evey subset of a nonregular language is a nonregular language.
(c) If A is a regular language and B is a language such that $A B$ is regular, then B is regular.
(d) If A is a regular language and B is a language such that $A-B$ is regular, then B is regular.
(e) For any language A and its complement A^{\prime} the language $A \cup A^{\prime}$ is regular.

