6 Homework

Due: Thursday, February 28, 2013.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, which problems are to be graded for extra credit, and which problems you did not attempt. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	\ldots
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	\ldots

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 6 problems
Points: 20 points per problem

1. Do Problem 2.30 parts a and d

Use the pumping lemma to show that the following languages are not context free.
(a) (a) $\left\{0^{n} 1^{n} 0^{n} 1^{n} \mid n \geq 0\right\}$
(b) (d) $\left\{t_{1} \# t_{2} \# \ldots \# t_{k} \mid k \geq 2\right.$, each $t_{i} \in\{a, b\}^{*}$, and $t_{i}=t_{j}$ for some $i \neq j\}$
2. Do Problem 2.31 or the Problem 2.32
(2.31) Let B be the language of all palindromes over $\{0,1\}$ containing equal number of 0 s and 1 s . Show that B is not context-free.
(2.32) Let $\Sigma=\{1,2,3,4\}$ and $C=\left\{w \in \Sigma^{*} \mid\right.$ in w, the number of 1 s equals the number of 2 s , and the number of 3 s equals the number of $4 \mathrm{~s}\}$. Show that C is not context-free.
3. Do Problem 2.34:

Consider the language $B=L(G)$, where $G=(V, \Sigma, R, R)$ is the following grammar: $V=\{S, T, U\} ; \Sigma=\{0, \#\}$; and R is the set of rules:

$$
S \rightarrow T T \mid U
$$

$T \rightarrow 0 T|T 0| \#$
U \rightarrow 0U00|\#
The pumping lemma for context-free languages, Theorem 2.34, states the existence of a pumping length p for B.
What is the minimum p that works in the pumping lemma for the language B. Justify your answer.

4. Do Problem 2.44

If A and B are languages, define $A \diamond B=\{x y \in A$ and $y \in B$ and $|x|=|y|\}$. Show that if A and B are regular languages, then $A \diamond B$ is a CFL.
5. Do Problem 2.54 (skipping part b)
2.54 Let G be the following grammar:

$$
\begin{aligned}
& S \rightarrow T \dashv \\
& T \rightarrow T a T b|T b T a| \epsilon
\end{aligned}
$$

- (a) Show that $L(G)=\left\{w \dashv \mid w\right.$ contains equal number of a^{\prime} s and b^{\prime} s $\}$. Use proof by induction on the length of w.
- (c)Describe the DPDA that recognizes $L(G)$.

6. Do Problem 3.2 parts (b) and (d) and Problem 3.5:
(a) 3.2 This exercise concerns $\mathrm{TM} M_{1}$, whose description and state diagram appear in Example 3.9. In each of the parts, give the
sequence of configurations that M_{1} enters when started on the indicated input string:

- (b) $1 \# 1$
- (d) 10\#11
(b) 3.5 Examine the formal definition of a Turing Machine to answer the following questions, and explain your reasoning:
- (a) Can a Turing machine ever write the blank symbol \sqcup on its tape?
- (b) Can the tape alphabet Γ be the same as the input alphabet Σ ?
- (c) Can a Turing machine's head ever be in the same location in two successive steps?
- (d) Can a Turing machine contain just a single state?

