3 Homework

Due: Thursday, January 31, 2013.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the *first page* of your solution write-up you *must* make explicit which problems are to be graded for regular credit, whic problems are to be graded for extra credit, and which problems you did not attmept. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

• You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 7 problems **Points:** 20 points per problem

- 1. Give the regular expressions generating the languages from Problem 1 in Homework 2, i.e.:
 - (a) $\{w | w \text{ the length of } w \text{ is at most } 5\}$
 - (b) $\{w | w \text{ is any string except } aa \text{ and } aaa\}$
 - (c) $\{w | w \text{ every odd position of } w \text{ ia } a\}$

1

- (d) $\{w | w \text{ contains at least two } as \text{ and at most one } b\}$
- (e) {*w*|*w* begins with *a* and ends with *b*, or begins with *b* and ends with *a*}
- 2. Give the regular expressions generating the languages from Problem 2 in Homework 2, i.e.:
 - (a) $\{w | w \text{ begins with } 1, \text{ and ends with } 0\}$
 - (b) $\{w | w \text{ contains at least three 1s} \}$
 - (c) {w | w contains substring 0101} (i.e., w = x0101y
 - (d) $\{w | w \text{ has length at least 3 and its third symbol is a 0}\}$
 - (e) $\{w | w \text{ does not contain the substring } 011\}$
- 3. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:
 - eliminating first state 3, then state 2, then state 1
 - eliminating first state 1, then state 2, then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \emptyset in unions and all instances of ϵ in concatenations.

4. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:

2

- eliminating first state 3, then state 2, then state 1
- eliminating first state 1, then state 2, then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \emptyset in unions and all instances of ϵ in concatenations.

- 5. For any string $w = w_1 w_2 ... w_n$, the reverse of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_n ... w_2 w_1$. For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} | w \in A\}$. Show that if A is regular, then so is $A^{\mathcal{R}}$.
- 6. *Problem* 1.42 For languages *A* and *B*, let the *perfect shuffle* of *A* and *B* be the language $\{w|w = a_1b_1...a_kb_k$, where $a_1...a_k \in A$ and $b_1..b_k \in B$, for each $a_i, b_i \in \Sigma$.

Show that the class of regular languages is closed under *perfect shuffle*.

- 7. Prove or disprove the following:
 - (a) Every subset of a regular language is a regular language.
 - (b) Every subset of a nonregular language is a nonregular language.
 - (c) If *A* is a regular language and *B* is a language such that *AB* is regular, then *B* is regular.
 - (d) If *A* is a regular language and *B* is a language such that A B is regular, then *B* is regular.
 - (e) For any language A and its complement A' the language $A \cup A'$ is regular.