3 Homework

Due: Thursday, January 31, 2013.

Instructions

- Please, review the homework grading policy outlined in the course information page.
- On the first page of your solution write-up you must make explicit which problems are to be graded for regular credit, whic problems are to be graded for extra credit, and which problems you did not attmept. Use a table that looks like this:

Problem	1	2	3	4	5	6	7	8	9	\ldots
Credit	RC	RC	RC	EC	RC	EC	NA	NA	EC	\ldots

where "RC" denotes "regular credit", "EC" denotes "extra credit", and "NA" denotes "not attempted". Failure to include such a table will result in an arbitrary set of problems being graded for regular credit, no problems being graded for extra credit, and a 5% penalty assessment.

- You must also write down with whom you worked on the assignment. If this varies from problem to problem, write down this information separately with each problem.

Problems

Required: 5 of the following 7 problems
Points: 20 points per problem

1. Give the regular expressions generating the languages from Problem 1 in Homework 2, i.e.:
(a) $\{w \mid w$ the length of w is at most 5$\}$
(b) $\{w \mid w$ is any string except $a a$ and $a a a\}$
(c) $\{w \mid w$ every odd position of w ia $a\}$
(d) $\{w \mid w$ contains at least two as and at most one $b\}$
(e) $\{w \mid w$ begins with a and ends with b, or begins with b and ends with $a\}$
2. Give the regular expressions generating the languages from Problem 2 in Homework 2, i.e.:
(a) $\{w \mid w$ begins with 1 , and ends with 0$\}$
(b) $\{w \mid w$ contains at least three 1 s$\}$
(c) $\{w \mid w$ contains substring 0101$\}$ (i.e., $w=x 0101 y$
(d) $\{w \mid w$ has length at least 3 and its third symbol is a 0$\}$
(e) $\{w \mid w$ does not contain the substring 011$\}$
3. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:

- eliminating first state 3 , then state 2 , then state 1
- eliminating first state 1 , then state 2 , then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \varnothing in unions and all instances of ϵ in concatenations.
4. Use the procedure described in Lemma 1.60 in the text to convert the following DFA to a regular expression in two different ways:

- eliminating first state 3 , then state 2 , then state 1
- eliminating first state 1 , then state 2 , then state 3

Show the resulting GNFA after each step, and do not try to simplify your answer (except for eliminating all instances of \varnothing in unions and all instances of ϵ in concatenations.
5. For any string $w=w_{1} w_{2} \ldots w_{n}$, the reverse of w, written $w^{\mathcal{R}}$, is the string w in reverse order, $w_{n} \ldots w_{2} w_{1}$. For any language A, let $A^{\mathcal{R}}=$ $\left\{w^{\mathcal{R}} \mid w \in A\right\}$. Show that if A is regular, then so is $A^{\mathcal{R}}$.
6. Problem 1.42 For languages A and B, let the perfect shuffle of A and B be the language $\left\{w \mid w=a_{1} b_{1} \ldots a_{k} b_{k}\right.$, where $a_{1} \ldots a_{k} \in A$ and $b_{1} . . b_{k} \in B$, for each $\left.a_{i}, b_{i} \in \Sigma\right\}$.
Show that the class of regular languages is closed under perfect shuffle.
7. Prove or disprove the following:
(a) Every subset of a regular language is a regular language.
(b) Every subset of a nonregular language is a nonregular language.
(c) If A is a regular language and B is a language such that $A B$ is regular, then B is regular.
(d) If A is a regular language and B is a language such that $A-B$ is regular, then B is regular.
(e) For any language A and its complement A^{\prime} the language $A \cup A^{\prime}$ is regular.

