10 Homework

Due: Thursday, April 11, 2013.

Problems

Required: 4 of the following 5 problems
Points: 25 points per problem

1. a Show that P is closed under complement and concatenation.

b Let A be a decidable language and let D be a polytime decider for it. Consider the following algorithm for deciding whether a given non-empty string s of length n belongs to A^*: For every possible way of splitting s into non-empty substrings $s = s_1s_2...s_k$, run D on each substring s_i in that split and accept iff all substrings are accepted by D for some split. Derive an exact expression for how many possible such splits there are as a function of $n = |s|$. Use this to conclude that this algorithm does not run in polynomial time, even though D does.

 c What does the result of part b imply about the closure of P under the star operation?

2. Do the Problem 7.10
 Show that ALL_{DFA} is in P.

3. Do the Problem 7.13
 Let $MODEXP = \{ <a, b, c, p> | a, b, c, p \text{ are binary integers such that } a^b \equiv c \pmod{p} \}$.
 Show that $MODEXP \in P$.
 Note that the most obvious algorithm does not run in polynomial time. Hint: Try it first where b is a power of 2.
4. Do the Problem 7.24
 Let $CNF_k = \{<\phi> | \phi \text{ is a satisfiable cnf-formula where each variable appears in at most } k \text{ places}\}$.

 (a) Show that $CNF_2 \in P$.

 (b) Show that CNF_3 is NP-complete.

5. Do the Problem 7.27
 A cut in undirected graph is a separation of the vertices V into two disjoint subsets S and T. The size of the cut is the number of edges that have one endpoint in S and the other in T. Let
 $MAXCUT = \{<G,k> | G \text{ has a cut of size } k \text{ or more}\}$.
 Show that $MAXCUT$ is NP-Complete.