
Exam 2 — CSU 390 Theory of Computation — Fall 2007

Instructions

• The exam is open book: You may use your notes, homeworks, any
handouts and solutions provided toyou in this class, the text (Sipser),
and any other paper-based references. You may not use any electronic
devices such as laptops, cell phones, PDAs, etc.

• Please, write your answers in the blue books provided. Show all your
work and indicate your final answers clearly.

Problem 1 [20 points]

Consider the following context-free grammar:
S → xS|xStS|a
where {a, t, x} are terminals.
Prove that this grammar is ambiguous by providing the following:

• List all words of length less than 6 in the language L generated by this
grammar.

Solution

(a) length 1: a

(b) length 2: S → xS → xa

(c) length 3: S → xS → xxS → xxa

(d) length 4: S → xS → xxS → xxxS → xxxa

(e) length 4: S → xStS → xatS → xata

(f) length 5: S → xS → xxS → xxxS → xxxxS → xxxxa

(g) length 5: S → xS → xxStS → xxatS → xxata

(h) length 5: S → xStS → xxStS → xxatS → xxata

(i) length 5: S → xStS → xStxS → xatxS → xatxa

• Show a string w in the language L that has (at least) two leftmost
derivations in this language.

Solution

String xxata has two leftmost derivations shown in (g) and (h).

1

• Show the two derivations for the string w.

Solution

(g) length 5: S → xS → xxStS → xxatS → xxata

(h) length 5: S → xStS → xxStS → xxatS → xxata

• Show the parse trees corresponding to these derivations.

S S
/ | / | | \
/ | / | | \
x S x S t S
/ | | \ / | |
/ | | \ x S a

x S t S |
| | a
a a

• Give a concise description of the language generated by this gram-
mar.

Solution

Each string starts with x. One option is a finite number of xs followed
by a, by using teh rule S → xS exclusively.The rule S → xStS intro-
duces ambiguity, because we can first apply the rule S → xS then
apply the rule S → xStS to the first S, or start with S → xStS and
apply the rule S → xS to the first S. This ambiguity persists for an
arbitrary number of levels in the parse tree.

Problem 2 [20 points]

Give context-free grammars that generate the following languages over
{a, b}. In each case annotate the rules to indicate what each rule generates.

• L1 = {anbn+2|n ≥ 0}

Solution

S → aSb|bb

The first rule generated an equal number of as and bs, actually ar-
ranged as anbn, with the variable S remaining in the middle. The

2

second rule then replaces S by bb, thus adding two more b to the pre-
viously balanced string.

• L2 = {w||w| is odd and the middle symbol is a}

Solution

S → aSa|aSb|bSa|bSb|a

The first four rules add one terminal on each side of the middle, cov-
ering the four possible combinations of the two letters a and b. The
fifth rule converts the variable in the middle to the terminal a, assur-
ing both of the requirements — that the string length is odd, and that
it is a.

Problem 3 [15 points]

Give a state transition diagram and a brief informal description for a push-
down automaton that recognizes the following language:

L3 = {ambm+ncn|m, n ≥ 0}
Solution

• Start by pushing $ onto the stack to mark the bottom of the stack and
move to the state 1.

• In the state 1 push all as onto the stack.

• When the first b is about to be read move to the state 2.

• Pop as and match them with input bs until the bottom of the stack is
reached.

3

• Pop and push back the bottom of the stack marker $ and move to the
state 3.

• Push the remaining bs in the input onto the stack.

• When the first c is about to be read move to the state 4.

• Pop bs and match them with input cs until the bottom of the stack is
reached.

• Pop the the bottom of the stack marker $ and move to the Accept
state.

• Add the transition that rejects any additional symbol after the bottom
of the stack has been reached in the state 4.

Alternate Solution
Start with the CFG that recognizes the language L3:
S → TU
T → aTb|ε
U → bUc|ε
and construct the PDA following the technique described in the book

on page 118:

4

Problem 4 [15 points]

Prove that the language L4 = {anbjck|k > n, k > j} is not context-free.
Solution
Suppose the pumping length is p. Choose the following string
w = apbpcp+1

Then any substring s = vxy of w of length |s| ≤ p must have one of the
following forms:

• s = am where m ≤ p. Then pumping up would produce a string
am′

bpcp+1 with m′
> (p + 1) and so the pumped up string would not

be in L4.

• s = bm where m ≤ p. Then pumping up would produce a string
apbm′

cp+1 with m′
> (p + 1) and so the pumped up string would not

be in L4.

• s = cm where m ≤ p. This cannot be pumped down, as in the result-
ing string apbpcm′

we have m′ ≤ p and so the pumped down string
would not be in L4.

• s = am1 bm2 . This string cannot be pumped up, as it would either
produce as and bs out of order, or produce a string with more as and
bs than cs and so the pumped up string would not be in L4.

• s = bm1 cm2 . We can divide s in one of the following ways:

– s = vxy = bm1′ ◦ x ◦ cm2′ , but then the string cannot be pumped
down, as there would no longer be more cs than aa.

– |y| = 0 and v = bm, or y = bm and |v| = 0 — but then the string
cannot be pumped up, as there would be more bs than cs.

– |y| = 0 and v = cm, or y = cm and |v| = 0 — but then the string
cannot be pumped down, as there would no longer be more cs
than bs or as.

– Finally, if either v = bm1 cm2 or y = bm1 cm2 then pumping up the
string would produce bs and cs out of order.

5

Problem 5 [15 points]

• Give a state transition diagram for a TM M with input alphabet {a, b}
that accepts all strings starting with a, rejects the empty string, and
loops on all other strings. Your diagram may use the implicit-reject
convention.

Solution

• Is L(M), the language recognized by your TM M, a decidable lan-
guage? Prove your answer.

Solution

This is a decidable language. We can build a Turing machine that
would just eliminate the transition to the state 3 and replace it with
an implicit rejection.

6

Problem 6 [15 points]

• Construct a TM to test for equality of two strings over the alphabet
{a, b}, where the strings are separated by a cell containing #.

Solution

7

• Describe in English the actions of your TM.

– In state 0 read a character and write x. Follow to the state 1 if the
input was b and to state 5 if the input was a.

– From state 1 keep reading all the letters of the first string without
writing anything new and moving to the right each time.

– When # appears on the input, move right and transition to state
2.

– Keep reading over the input that has been marked with xs.

– The first letter after xs should match the b that we have read in
the first string. If it does, write x on the tape and move to the
left, and transition to the state 3.

– Keep reading over all marked letters of the second string, until
you find #.

– Read # and transition to the state 4.

– Read over the letters of the first string moving left until you find
the rightmost marked one.

– When you find x move to the right to look at the first un-matched
letter of the first string and transition back to state 0.

– For matching letter a we follow the same process through states
5, 6, 7, 8 and back to 0.

– If all the letters in the first string have been matched (or the first
string was empty) read the # in the state 0 and transition to the
state 9.

– In the state 9 read all the marked letters of the second string,
moving to the right.

– If the letter after all marked ones is a blank, then all the letters in
the second string have been matched with corresponding letters
in the first string and we move to the state 10, the ACCEPT state.

– In all states, encountering a letter not explicitly expected leads
to the REJECT state.

8

