# Exam 2 — CSU 390 Theory of Computation — Fall 2007

# Instructions

- The exam is open book: You may use your notes, homeworks, any handouts and solutions provided toyou in this class, the text (Sipser), and any other paper-based references. You may not use any electronic devices such as laptops, cell phones, PDAs, etc.
- Please, write your answers in the blue books provided. **Show all your work** and indicate your final answers clearly.

### Problem 1 [20 points]

Consider the following context-free grammar:

 $S \rightarrow xS|xStS|a$ where  $\{a, t, x\}$  are terminals. Prove that this grammar is ambiguous by providing the following:

• List all words of length less than 6 in the language *L* generated by this grammar.

#### Solution

- (a) length 1: *a*
- (b) length 2:  $S \rightarrow xS \rightarrow xa$
- (c) length 3:  $S \rightarrow xS \rightarrow xxS \rightarrow xxa$
- (d) length 4:  $S \rightarrow xS \rightarrow xxS \rightarrow xxxS \rightarrow xxxa$
- (e) length 4:  $S \rightarrow xStS \rightarrow xatS \rightarrow xata$
- (f) length 5:  $S \rightarrow xS \rightarrow xxS \rightarrow xxxS \rightarrow xxxXS \rightarrow xxxxa$
- (g) length 5:  $S \rightarrow xS \rightarrow xxStS \rightarrow xxatS \rightarrow xxata$
- (h) length 5:  $S \rightarrow xStS \rightarrow xxStS \rightarrow xxatS \rightarrow xxata$
- (i) length 5:  $S \rightarrow xStS \rightarrow xStxS \rightarrow xatxS \rightarrow xatxa$
- Show a string *w* in the language *L* that has (at least) two leftmost derivations in this language.

#### Solution

String *xxata* has two leftmost derivations shown in (g) and (h).

• Show the two derivations for the string *w*.

#### Solution

(g) length 5:  $S \rightarrow xS \rightarrow xxStS \rightarrow xxatS \rightarrow xxata$ (h) length 5:  $S \rightarrow xStS \rightarrow xxStS \rightarrow xxatS \rightarrow xxata$ 

• Show the parse trees corresponding to these derivations.



• Give a concise description of the language generated by this grammar.

#### Solution

Each string starts with *x*. One option is a finite number of *x*s followed by *a*, by using teh rule  $S \rightarrow xS$  exclusively. The rule  $S \rightarrow xStS$  introduces ambiguity, because we can first apply the rule  $S \rightarrow xS$  then apply the rule  $S \rightarrow xStS$  to the first *S*, or start with  $S \rightarrow xStS$  and apply the rule  $S \rightarrow xS$  to the first *S*. This ambiguity persists for an arbitrary number of levels in the parse tree.

### Problem 2 [20 points]

Give context-free grammars that generate the following languages over  $\{a, b\}$ . In each case annotate the rules to indicate what each rule generates.

•  $L_1 = \{a^n b^{n+2} | n \ge 0\}$ 

# Solution

 $S \rightarrow aSb|bb$ 

The first rule generated an equal number of *a*s and *b*s, actually arranged as  $a^n b^n$ , with the variable *S* remaining in the middle. The

second rule then replaces *S* by *bb*, thus adding two more *b* to the previously balanced string.

•  $L_2 = \{w | |w| \text{ is odd and the middle symbol is } a\}$ 

### Solution

```
S \rightarrow aSa|aSb|bSa|bSb|a
```

The first four rules add one terminal on each side of the middle, covering the four possible combinations of the two letters a and b. The fifth rule converts the variable in the middle to the terminal a, assuring both of the requirements — that the string length is odd, and that it is a.

# Problem 3 [15 points]

Give a state transition diagram and a brief informal description for a pushdown automaton that recognizes the following language:

 $L_3 = \{a^m b^{m+n} c^n | m, n \ge 0\}$ Solution



- Start by pushing \$ onto the stack to mark the bottom of the stack and move to the state 1.
- In the state 1 push all *a*s onto the stack.
- When the first *b* is about to be read move to the state 2.
- Pop *a*s and match them with input *b*s until the bottom of the stack is reached.

- Pop and push back the bottom of the stack marker \$ and move to the state 3.
- Push the remaining *b*s in the input onto the stack.
- When the first *c* is about to be read move to the state 4.
- Pop *b*s and match them with input *c*s until the bottom of the stack is reached.
- Pop the the bottom of the stack marker \$ and move to the *Accept* state.
- Add the transition that rejects any additional symbol after the bottom of the stack has been reached in the state 4.

#### Alternate Solution

Start with the CFG that recognizes the language  $L_3$ :

 $S \rightarrow TU$ 

 $\begin{array}{l} T \to aTb | \epsilon \\ U \to bUc | \epsilon \end{array}$ 

and construct the PDA following the technique described in the book on page 118:



#### Problem 4 [15 points]

Prove that the language  $L_4 = \{a^n b^j c^k | k > n, k > j\}$  is not context-free. **Solution** 

Suppose the pumping length is *p*. Choose the following string  $w = a^p b^p c^{p+1}$ 

Then any substring s = vxy of w of length  $|s| \le p$  must have one of the following forms:

- $s = a^m$  where  $m \le p$ . Then pumping up would produce a string  $a^{m'}b^pc^{p+1}$  with m' > (p+1) and so the pumped up string would not be in  $L_4$ .
- $s = b^m$  where  $m \le p$ . Then pumping up would produce a string  $a^p b^{m'} c^{p+1}$  with m' > (p+1) and so the pumped up string would not be in  $L_4$ .
- $s = c^m$  where  $m \le p$ . This cannot be pumped down, as in the resulting string  $a^p b^p c^{m'}$  we have  $m' \le p$  and so the pumped down string would not be in  $L_4$ .
- $s = a^{m_1}b^{m_2}$ . This string cannot be pumped up, as it would either produce *a*s and *b*s out of order, or produce a string with more *a*s and *b*s than *c*s and so the pumped up string would not be in  $L_4$ .
- $s = b^{m_1}c^{m_2}$ . We can divide *s* in one of the following ways:
  - $s = vxy = b^{m1'} \circ x \circ c^{m2'}$ , but then the string cannot be pumped down, as there would no longer be more *cs* than *a*a.
  - |y| = 0 and  $v = b^m$ , or  $y = b^m$  and |v| = 0 but then the string cannot be pumped up, as there would be more *bs* than *cs*.
  - |y| = 0 and  $v = c^m$ , or  $y = c^m$  and |v| = 0 but then the string cannot be pumped down, as there would no longer be more *c*s than *b*s or *a*s.
  - Finally, if either  $v = b^{m_1}c^{m_2}$  or  $y = b^{m_1}c^{m_2}$  then pumping up the string would produce *b*s and *c*s out of order.

# Problem 5 [15 points]

• Give a state transition diagram for a TM *M* with input alphabet {*a*, *b*} that accepts all strings starting with *a*, rejects the empty string, and loops on all other strings. Your diagram may use the implicit-reject convention.

# Solution



• Is *L*(*M*), the language recognized by your TM *M*, a decidable language? Prove your answer.

# Solution

This is a decidable language. We can build a Turing machine that would just eliminate the transition to the state 3 and replace it with an implicit rejection.

# Problem 6 [15 points]

• Construct a TM to test for equality of two strings over the alphabet {*a*, *b*}, where the strings are separated by a cell containing #.

Solution



- Describe in English the actions of your TM.
  - In state 0 read a character and write *x*. Follow to the state 1 if the input was *b* and to state 5 if the input was *a*.
  - From state 1 keep reading all the letters of the first string without writing anything new and moving to the right each time.
  - When # appears on the input, move right and transition to state
    2.
  - Keep reading over the input that has been marked with *xs*.
  - The first letter after *x*s should match the *b* that we have read in the first string. If it does, write *x* on the tape and move to the left, and transition to the state 3.
  - Keep reading over all marked letters of the second string, until you find #.
  - Read # and transition to the state 4.
  - Read over the letters of the first string moving left until you find the rightmost marked one.
  - When you find *x* move to the right to look at the first un-matched letter of the first string and transition back to state 0.
  - For matching letter *a* we follow the same process through states 5, 6, 7, 8 and back to 0.
  - If all the letters in the first string have been matched (or the first string was empty) read the # in the state 0 and transition to the state 9.
  - In the state 9 read all the marked letters of the second string, moving to the right.
  - If the letter after all marked ones is a blank, then all the letters in the second string have been matched with corresponding letters in the first string and we move to the state 10, the ACCEPT state.
  - In all states, encountering a letter not explicitly expected leads to the *REJECT* state.