## Exam 2 - CSU 390 Theory of Computation - Fall 2007

## Instructions

- The exam is open book: You may use your notes, homeworks, any handouts and solutions provided toyou in this class, the text (Sipser), and any other paper-based references. You may not use any electronic devices such as laptops, cell phones, PDAs, etc.
- Please, write your answers in the blue books provided. Show all your work and indicate your final answers clearly.


## Problem 1 [20 points]

Consider the following context-free grammar:
$S \rightarrow x S|x S t S| a$
where $\{a, t, x\}$ are terminals.
Prove that this grammar is ambiguous by providing the following:

- List all words of length less than 6 in the language $L$ generated by this grammar.


## Solution

(a) length 1: $a$
(b) length 2: $S \rightarrow x S \rightarrow x a$
(c) length 3: $S \rightarrow x S \rightarrow x x S \rightarrow x x a$
(d) length 4: $S \rightarrow x S \rightarrow x x S \rightarrow x x x S \rightarrow x x x a$
(e) length 4: $S \rightarrow x S t S \rightarrow x a t S \rightarrow$ xata
(f) length 5: $S \rightarrow x S \rightarrow x x S \rightarrow x x x S \rightarrow x x x x S \rightarrow x x x x a$
(g) length 5: $S \rightarrow x S \rightarrow x x S t S \rightarrow x x a t S \rightarrow$ xxata
(h) length 5: $S \rightarrow x S t S \rightarrow x x S t S \rightarrow$ xxat $S \rightarrow$ xxata
(i) length 5: $S \rightarrow x S t S \rightarrow x S t x S \rightarrow x a t x S \rightarrow x a t x a$

- Show a string $w$ in the language $L$ that has (at least) two leftmost derivations in this language.
Solution
String xxata has two leftmost derivations shown in (g) and (h).
- Show the two derivations for the string $w$.


## Solution

(g) length 5: $S \rightarrow x S \rightarrow x x S t S \rightarrow x x a t S \rightarrow$ xxata
(h) length 5: $S \rightarrow x S t S \rightarrow x x S t S \rightarrow x x a t S \rightarrow$ xxata

- Show the parse trees corresponding to these derivations.

- Give a concise description of the language generated by this grammar.


## Solution

Each string starts with $x$. One option is a finite number of $x$ followed by $a$, by using teh rule $S \rightarrow x S$ exclusively.The rule $S \rightarrow x S t S$ introduces ambiguity, because we can first apply the rule $S \rightarrow x S$ then apply the rule $S \rightarrow x S t S$ to the first S , or start with $S \rightarrow x S t S$ and apply the rule $S \rightarrow x S$ to the first $S$. This ambiguity persists for an arbitrary number of levels in the parse tree.

## Problem 2 [20 points]

Give context-free grammars that generate the following languages over $\{a, b\}$. In each case annotate the rules to indicate what each rule generates.

## - $L_{1}=\left\{a^{n} b^{n+2} \mid n \geq 0\right\}$

## Solution

$S \rightarrow a S b \mid b b$
The first rule generated an equal number of $a$ s and $b s$, actually arranged as $a^{n} b^{n}$, with the variable $S$ remaining in the middle. The
second rule then replaces $S$ by $b b$, thus adding two more $b$ to the previously balanced string.

- $L_{2}=\{w| | w \mid$ is odd and the middle symbol is $a\}$


## Solution

$S \rightarrow a S a|a S b| b S a|b S b| a$
The first four rules add one terminal on each side of the middle, covering the four possible combinations of the two letters $a$ and $b$. The fifth rule converts the variable in the middle to the terminal $a$, assuring both of the requirements - that the string length is odd, and that it is $a$.

## Problem 3 [15 points]

Give a state transition diagram and a brief informal description for a pushdown automaton that recognizes the following language:
$L_{3}=\left\{a^{m} b^{m+n} c^{n} \mid m, n \geq 0\right\}$

## Solution



- Start by pushing \$ onto the stack to mark the bottom of the stack and move to the state 1.
- In the state 1 push all as onto the stack.
- When the first $b$ is about to be read move to the state 2 .
- Pop as and match them with input bs until the bottom of the stack is reached.
- Pop and push back the bottom of the stack marker $\$$ and move to the state 3.
- Push the remaining $b s$ in the input onto the stack.
- When the first $c$ is about to be read move to the state 4.
- Pop $b s$ and match them with input $c s$ until the bottom of the stack is reached.
- Pop the the bottom of the stack marker \$ and move to the Accept state.
- Add the transition that rejects any additional symbol after the bottom of the stack has been reached in the state 4 .


## Alternate Solution

Start with the CFG that recognizes the language $L_{3}$ :
$S \rightarrow T U$
$T \rightarrow a T b \mid \epsilon$
$U \rightarrow b U c \mid \epsilon$
and construct the PDA following the technique described in the book on page 118:


## Problem 4 [15 points]

Prove that the language $L_{4}=\left\{a^{n} b^{j} c^{k} \mid k>n, k>j\right\}$ is not context-free.

## Solution

Suppose the pumping length is $p$. Choose the following string $w=a^{p} b^{p} c^{p+1}$
Then any substring $s=v x y$ of $w$ of length $|s| \leq p$ must have one of the following forms:

- $s=a^{m}$ where $m \leq p$. Then pumping up would produce a string $a^{m{ }^{\prime}} b^{p} c^{p+1}$ with $m^{\prime}>(p+1)$ and so the pumped up string would not be in $L_{4}$.
- $s=b^{m}$ where $m \leq p$. Then pumping up would produce a string $a^{p} b^{m^{\prime}} c^{p+1}$ with $m^{\prime}>(p+1)$ and so the pumped up string would not be in $L_{4}$.
- $s=c^{m}$ where $m \leq p$. This cannot be pumped down, as in the resulting string $a^{p} b^{p} c^{m^{\prime}}$ we have $m^{\prime} \leq p$ and so the pumped down string would not be in $L_{4}$.
- $s=a^{m_{1}} b^{m_{2}}$. This string cannot be pumped up, as it would either produce $a$ s and $b$ s out of order, or produce a string with more $a$ and $b s$ than $c s$ and so the pumped up string would not be in $L_{4}$.
- $s=b^{m_{1}} c^{m_{2}}$. We can divide $s$ in one of the following ways:
$-s=v x y=b^{m 1^{\prime}} \circ x \circ c^{m 2^{\prime}}$, but then the string cannot be pumped down, as there would no longer be more cs than $a$ a.
$-|y|=0$ and $v=b^{m}$, or $y=b^{m}$ and $|v|=0$ - but then the string cannot be pumped up, as there would be more $b s$ than $c s$.
$-|y|=0$ and $v=c^{m}$, or $y=c^{m}$ and $|v|=0$ - but then the string cannot be pumped down, as there would no longer be more cs than $b$ s or $a$ s.
- Finally, if either $v=b^{m_{1}} c^{m_{2}}$ or $y=b^{m_{1}} c^{m_{2}}$ then pumping up the string would produce $b s$ and $c s$ out of order.


## Problem 5 [15 points]

- Give a state transition diagram for a TM $M$ with input alphabet $\{a, b\}$ that accepts all strings starting with $a$, rejects the empty string, and loops on all other strings. Your diagram may use the implicit-reject convention.


## Solution



- Is $L(M)$, the language recognized by your TM $M$, a decidable language? Prove your answer.


## Solution

This is a decidable language. We can build a Turing machine that would just eliminate the transition to the state 3 and replace it with an implicit rejection.

## Problem 6 [15 points]

- Construct a TM to test for equality of two strings over the alphabet $\{a, b\}$, where the strings are separated by a cell containing \#.


## Solution



- Describe in English the actions of your TM.
- In state 0 read a character and write $x$. Follow to the state 1 if the input was $b$ and to state 5 if the input was $a$.
- From state 1 keep reading all the letters of the first string without writing anything new and moving to the right each time.
- When \# appears on the input, move right and transition to state 2.
- Keep reading over the input that has been marked with $x$ s.
- The first letter after $x$ s should match the $b$ that we have read in the first string. If it does, write $x$ on the tape and move to the left, and transition to the state 3.
- Keep reading over all marked letters of the second string, until you find \#.
- Read \# and transition to the state 4.
- Read over the letters of the first string moving left until you find the rightmost marked one.
- When you find $x$ move to the right to look at the first un-matched letter of the first string and transition back to state 0 .
- For matching letter $a$ we follow the same process through states $5,6,7,8$ and back to 0 .
- If all the letters in the first string have been matched (or the first string was empty) read the \# in the state 0 and transition to the state 9 .
- In the state 9 read all the marked letters of the second string, moving to the right.
- If the letter after all marked ones is a blank, then all the letters in the second string have been matched with corresponding letters in the first string and we move to the state 10, the ACCEPT state.
- In all states, encountering a letter not explicitly expected leads to the REJECT state.

