Polynomial-Time Reducibility
Recall that reducibility was an important concept for computability theory. It provided a useful
tool for relating the decidability or recognizability of two languages.
It also plays an important role in complexity theory, relating the complexity of deciding two lan-
guages.
Suppose that A and B are languages over an alphabet X..

Definition. A function f : ¥* — X* is polynomial time (polytime) computable if there is a
polynomial time transducer TM that, when given any input w, halts with only f(w) on its tape.

Definition. Suppose there is a polytime computable function f having the property that w € A
iff f(w) € B. Then we say A is polynomial time (polytime) reducible to B, written A <p B. We
also call f a polynomial time (polytime) reduction from A to B.

Note: Such an f is just a mapping reduction from A to B, but here we impose the additional
condition that it must run in polynomial time.

Implications of Polytime Reducibility

Suppose that there is a polytime reduction f from language A to language B. The following
diagram depicts how a decider for A can be constructed by combining a TM that computes f with
a decider for B:

Decider for A

w f(w) accept/(eject

TM for f Decider for B

Here is a description of the above TM, where F' denotes the TM that computes f and Dg denotes
the decider for B:

Dy = “On input w:
1. Run F on w to compute f(w).
2. Run Dp on f(w). If it accepts, accept; if it rejects, reject.”

Theorem. Suppose A <p B. Then:
1. If B € P, then A € P.
2. If A¢Z P, then B ¢ P.

Proof. Part 2 is just the contrapositive of part 1, so we’ll just prove that. Let f denote the polytime
reduction. Recall that this means that it has the property that f(w) € B iff w € A. Since B € P,
it has a polytime decider, so that’s what we use as our decider Dg for B.

Now D 4 is obviously a decider for A, but does it run in polynomial time? Yes, but let’s look closely
at this:

Let the running time of F' be O(n*), where n denotes the size of its input string w, and let the
running time of D be O(m!), where m denotes the size of the input f(w) to Dp. How big
could f(w) be? No transducer TM can produce output longer than the number of computation
steps it uses since it must use at least one step for each symbol it writes on its tape. Therefore
m = |f(w)| = O(n¥). This means the running time of Dy is O(m!) = O((n*)!) = O(n*), so the
overall running time of D4 is O(n*) + O(n*!), showing that its running time is, indeed, polynomial.

NP-Completeness

Definition. A language B is NP-complete if it satisfies these two conditions:
1. Be NP

2. A <p B for every A € NP.

An immediate consequence of this definition and the previous theorem is the following. Suppose a
polytime decider is found for any particular NP-complete language. Then:

e such a decider can be used as a subprocedure to create a polytime decider for any other
language in NP; and therefore

e all languages in NP would be polytime decidable; so
e P=NP.

How does one go about proving a language is NP-complete?
Answer in most cases (for us, all cases): Use the following result.

Theorem. If B € NP and A <p B for some NP-complete language A, then B is NP-complete.

Proof. Since the composition of polytime reductions is a polytime reduction, if every language in
NP is polytime reducible to A and A is polytime reducible to B, then every language in NP is
polytime reducible to B.

Note the analogy with proving undecidability or non-Turing-recognizability:

e To prove a language B is undecidable, find an undecidable language A that mapping reduces
to B.

e To prove a language B is non-Turing-recognizable, find a non-Turing-recognizable language
A that mapping reduces to B.

e To prove a language B is NP-complete, find an NP-complete language A that polytime reduces
to B (and also check that B € NP).

But this process has to start with a direct proof first ...

The Cook-Levin Theorem

Theorem. SAT is NP-complete.

Proof Idea. Step 1 is to show that SAT € NP. We've already done this, but for completeness
we’ll repeat it here: Use as a certificate the satisfying assignment. Verifying that it is a satisfying
assignment can clearly be done in polynomial time.

The hard part is step 2, showing that every language in NP is polytime reducible to SAT. This
is done using a direct proof, which can be found on pp. 277-282 of Sipser. We omit it since it’s
beyond the scope of this course.

In some sense, it’s not surprising that there is an intimate relationship between TM computation
and Boolean formulas: Computer circuits are built out of logic gates.

3SAT is NP-Complete

Theorem. 3SAT is NP-complete.

Proof. Step 1: We've shown earlier that 3SAT € NP, but for completeness we’ll repeat that
argument: Use as a certificate the satisfying assignment. It is clear that we can verify that it is a
satisfying assignment for the given formula in polynomial time.

Step 2: We now show that SAT <p 3SAT. Since we know by the Cook-Levin Theorem that SAT
is NP-complete, it will then follow that 8SAT is NP-complete. Here is the reduction:

F = “On input (¢), where ¢ is a Boolean formula:
1. Convert ¢ to a CNF formula ¢, as described on the next page.
2. Convert ¢' to a 3CNF formula ¢”, as described below.
3. Output (¢").”

We discuss stage 1 in more detail on the following page. While it is well-known that every Boolean
formula can be converted to a logically equivalent CNF formula in the same variables, it can be
shown that this cannot necessarily be done in time polynomial in the size of the formula, so a
more elaborate technique is necessary that introduces more variables and more clauses while still
preserving satisfiability.

In fact, the technique we use has the property that every clause in the resulting CNF formula ¢’
has either 2 or 3 literals (except in the trivial case when the original formula consists of just a single
literal), so all stage 2 needs to do to guarantee that there are exactly 3 literals in every clause is to
repeat one of the literals, say the first, in any such clause. The resulting formula ¢" is obviously
logically equivalent to ¢’ since z V z is logically equivalent to z for any Boolean variable z.

Since the process to be described on the next page, along with the process of repeating a literal in
any 2-literal clause, runs in time polynomial in the size of the Boolean formula ¢, this is a polytime
algorithm. Furthermore, as we also discuss on the next page, ¢ is satisfiable iff ¢/, and hence ¢",
is, so this is a polytime reduction from SAT to 3SAT. Therefore, 3SAT is NP-complete.

Polytime Conversion to CNF
Preserving Satisfiability

Here we elaborate on stage 1 of the reduction from SAT to 3SAT. The steps are as follows:

1. Create what is essentially a parse tree for the formula, where each node represents and AND
or OR of exactly 2 arguments, or a NOT of a single argument. The leaves of this tree should
be literals.

2. Label each node of this tree with a new variable.

3. Create a new formula ¢; that is a conjunction of all the relationships (using the < Boolean
operator) among the new and old variables according to this parse tree. Each conjunct will
involve either 2 or 3 variables.

4. Use the fact that p = ¢ is logically equivalent to (henceforth denoted by =) pV ¢, so

pog=pP=>9ANpPpEqg=@VYA(PVTY

to rewrite this formula using only the AND, OR, and NOT operators. This will create a
logically equivalent formula ¢o having two conjuncts for every conjunct in ¢q.

5. The individual conjuncts in this formula may not be in clause form, but they can be converted
individually into this proper form by appropriate use of straightforward logical identities
involving de Morgan’s laws and the distributive laws for OR and AND. Note that each
conjunct to be so converted involves at most 3 variables, so this process is guaranteed to
generate no more than 23 = 8 clauses per conjunct of the formula ¢, created in the previous
step. This is the final CNF result, which we call ¢'.

Since the number of new variables is equal to the number of internal nodes in the parse tree, there is
one for every operator in ¢ (not counting negations of single variables) so this number is essentially
linear in the size of ¢. In ¢; there is one conjunct per newly added variable, and the conversion to
¢ in step 4 doubles the number of conjuncts. Then the conversion to ¢ in step 5 creates at most
8 clauses per conjunct in ¢, so this results in at most 16 clauses per newly added variable. Thus
the overall size of the final result ¢3, and hence the time to compute it, is polynomial in the size of

9.

We also need to check that the final CNF formula ¢’ is satisfiable iff ¢ is. One direction is true
because any satisfying assignment for ¢’ can be restricted to just the original variables, clearly
giving a satisfying assignment for ¢. For the other direction, if we have a satisfying assignment for
¢, then this gives a well-defined set of values to all the newly added variables, and this combination
of values must be a satisfying assignment for ¢/ by the way it is constructed.

Polytime Transformation of SAT Problem Instances
to 3SAT Problems Instances: An Example

Here we illustrate the entire process of transforming a Boolean formula according to the description
given on the previous page, combined with the additional easy step of modifying the CNF result
so that every clause contains exactly 3 literals.

Consider the Boolean formula ¢ = (z1 A z2) V (22 V T3).

Here is result of steps 1 and 2 of the polytime CNF conversion process described on the previous
page when applied to ¢. The additional variables y1,y2,ys, y4 are used to label the internal nodes
of the tree as shown.

Yq

Yo : Y3

MA@

R (=)

X2 X

Based on this tree, step 3 of the conversion process produces the formula

$1 = (1S y2Vys)A
y2<:>:c1/\m2)/\
Y3 € Y1) A

Ys < w2 V T3),

(
(
(
(

where each conjunct represents the “constraint” that the value at that node must match the correct
value for the computation performed at that node on its children.

Polytime Transformation of SAT Problem Instances
to 3SAT Problem Instances: An Example (Continued)

Step 4 of the conversion process then yields the logically equivalent formula

$2 = TVY2Vys)A(y1Viyz Vyz) A
BV (21 Az2)) A(y2 Vo1 AT2) A
Y3 VUa) A (Y3 V3a) A

Y2 V32 VT3) A (ys V 32 VT3),

(
(
(
(

which, finally, is logically equivalent to the CNF formula

¢ = VR Vy)AVE) A VEE) A
BVZ)A([J2Vr2) A(y2 VIV T2) A
73 V1) A (y3 Vys) A

Ys V T2 Vac_g)/\(y4V:1:_2)/\(y4V:v3).

A~ A~~~

If we now repeat the first literal in each clause containing fewer than 3 literals to bring the number
up to exactly 3, we end up with the 3CNF formula

¢" = @V V) AV VER) Al VY VEE) A
BVRVI)AGERVRVT2)A (Y2 VIV T2) A
TV VYD) A (s Vys Vys) A
@V T2 VT3 A(Ya Vys VT2) A(YsVys V x3).

CLIQUE is NP-Complete

Theorem. CLIQUE is NP-complete.

Proof. Step 1: We've shown earlier that CLIQUE € NP because a list of the & nodes forming the
clique can be used as the certificate and verifying that it’s a clique can be done in polynomial time.

Step 2: We now show that 3SAT <p CLIQUE. Since we know 3SAT is NP-complete, it will then
follow that CLIQUE is NP-complete. Here is the reduction:

F = “On input (¢), where ¢ is a 3CNF Boolean formula having & clauses:
1. Create the graph G as described below.
2. Output (G, k).

We now show how the graph G is constructed. Write the given Boolean formula as the AND of its
clauses, as ¢ =c1 Aco A... Acg, where ¢; = li V lé V l:i,, for 1 < < k, with each l;- being the literal
Ty OT T, for some variable x,,.

Then define G as follows: There is one node u; for each literal l;- withl1 <j<3and1<i<k.
Call each of the 3 nodes corresponding to a single clause a triple. Since there are k clauses, and
hence k triples, there are a total of 3k nodes in G. For each pair of literals from different clauses
there is an edge between corresponding nodes except when they represent contradictory literals.
More formally, there is an edge (uj-,u{z’) in G for every ¢ # p and l; is not the negation of /2.
Expressed in terms of the Boolean formula, there are no within-clause connections, nor is any
literal connected to its logical negation.

Now suppose (¢) € 8SAT, where k is the number of clauses in ¢. This means that ¢ has a
satisfying assignment, so at least one literal in every clause must be 1. Let the literals assigned the

. 1 42 k : 1 2 k
value 1 in each clause be {7 ,15,...,li . Then the corresponding nodes u; ,u;,, ..., u; form a k-

clique since there are edges between every pair of these since they’re all from different clauses and no
pair of them corresponds to contradictory literals. Therefore (¢) € 3SAT implies (G, k) € CLIQUE.

For the other direction, suppose (G, k) € CLIQUE, which means G has a k-clique. Since there
are no within-triple edges, a k-clique must consist of exactly one node from each of the k triples.
Let the nodes in the k-clique be u}l , u%z, ... ,ufk. If we assign 1 to each of the corresponding literals
131,11-22, ... ,lfk, this would make each clause TRUE, which would represent a satisfying assignment
unless this led to a contradictory assignment where both a variable z,, and its negation T, were
assigned the value 1. But this can’t happen since G was constructed so that no pair of nodes
corresponding to contradictory literals has an edge between them, so any two such nodes could not
be part of a clique. Therefore this way of assigning values according to a k-clique gives a valid
satisfying assignment for ¢. (It may happen that not every variable has a corresponding node in
the clique, but any such variables are free to be assigned 0 or 1 arbitrarily and the result will be a
satisfying assignment.) Thus (G, k) € CLIQUE implies (¢) € 3SAT.

Therefore (¢) € 3SAT iff (G,k) € CLIQUE so this is a valid mapping reduction. Since the
number of nodes in G is O(k) and the number of edges is O(k?), it’s not hard to see that construction
of G from ¢ can be done in time polynomial in the size of ¢. Therefore this is a polytime reduction
from 8SAT to CLIQUE, and since 35AT is NP-complete, it follows that CLIQUE is NP-complete.

Transforming 3SAT Problem Instances
to CLIQUE Problem Instances: An Example

Figure 7.33 of the Sipser text shows the graph corresponding to one example. Here we’ll do a
different example.

Consider the 3CNF Boolean formula
¢ = (.Tl V x1 VZE_Q) A (.’II_1V.’L'_2V.’II_3) A (ZEl V.’IIQV.’L';J,) A (.’171 \/.’L‘QV.’II_g)

Its has the four clauses

cit = 11 V1 VT
cg = T1VI2 VI3
c3 = x1VIoaVIy
cg = x1VIoVZIT3

Below is part of the graph G constructed to correspond to this ¢. All the nodes of G are shown,
but many edges of G are not shown to prevent the diagram from being hopelessly cluttered. The
node labels shown (outside each node) are consistent with the labeling used in the proof on the
previous page, where u; is the node corresponding to the j*! literal in clause ¢;. The actual literal
each node corresponds to in ¢ is shown inside the node.

2 2 2
up up Uj

1 3
uj Uy

1

1 3
ujz us

The reduction from 3SAT to CLIQUE transforms the question of satisfiability of this formula ¢ to
the question of the existence of k-cliques in this graph G, where k = 4 is the number of clauses in
¢. For this reason the above diagram displays just those edges belonging to two of several 4-cliques
that exist in the graph. One 4-clique has its edges displayed using solid lines and the other has its
edges displayed using dashed lines.

10

Transforming 3SAT Problem Instances to CLIQUE Problem
Instances: An Example (Continued)

The 4-clique whose edges are displayed as solid lines is the set of nodes
{ul a3 ud]}
This 4-clique corresponds to assigning values to literals as follows:
=173 =1z3=1,21 =1,
which gives the satisfying assignment

Ir1 = 1,1‘2 :0,.’1}3 = 1.

The 4-clique whose edges are displayed as dashed lines is the set of nodes

1,2 .3 ,4
{ulau3au17u3}'

This 4-clique corresponds to assigning values to literals as follows:
rn=1,T3=1,2: =1,73 = 1.
Since this does not constrain the value of s, this gives two satisfying assignments

r1=1,20=0,z3=0and z;1 = 1,290 = 1,23 = 0.

11

VERTEX-COVER is NP-Complete

Theorem. VERTEX-COVER is NP-complete.

Proof. Step 1: We’ve shown earlier that VERTEX-COVER € NP because a list of the & nodes
forming a vertex cover can be used as the certificate and verifying that it’s a vertex cover can be
done in polynomial time.

Step 2: We now show that CLIQUE <p VERTEX-COVER. Since we know CLIQUE is NP-
complete, it will then follow that VERTEX-COVER is NP-complete. Here is the reduction:

F = “On input (G, k), where G = {V, E} is an undirected graph:
1. Create the complement graph G as described below.
2. Output (G, |V| — k).

For any undirected graph G = (V, E), its complement G is defined to be (V, E), where E consists
of those pairs (4,7) such that (i,7) is not an edge in G. In other words, G is the graph consisting
of all nodes in G and exactly those edges that are not in G. We now show that G has a clique of
size k iff G has a vertex cover of size |V| — k.

Assume G has a clique S of size k. This means that every pair of nodes in S has an edge
between them. So in G, there are no edges between any pair of nodes in S. Thus every edge in G is
connected to some node not in S, which are the nodes in V — S. Since every edge in G is connected
to some node in V — S, V — § forms a vertex cover for G. Since V — S has |V| — k elements
in it, G has a vertex cover of size |V| — k. Therefore (G,k) € CLIQUE implies (G,|V| — k) €
VERTEX-COVER.

For the other direction, assume (G, |V| — k) € VERTEX-COVER. This means there is a set S’
of nodes in G of size |V| — k such that every edge in G includes some node in S’. This means there
can be no edges between any pair of nodes not in S, i.e., between any pair of nodes in V — S’. Let
S =V — &' Then S consists of |[V| — (|V| — k) = k nodes of G having no edges between any of
them. But this means that in G, these k£ nodes are fully connected with each other, so they form
a k-clique. Therefore (G, |V| — k) € VERTEX-COVER implies (G, k) € CLIQUE.

Thus this is a valid mapping reduction from CLIQUE to VERTEX-COVER, and it is easily
implemented in polynomial time. Therefore VERTEX-COVER is NP-complete since CLIQUE is.

12

Transforming CLIQUE Problem Instances to
VERTEX-COVER Problem Instances: An Example

G G
4-clique in G Size-2 vertex cover in G

S,

The proof on the previous page is really a proof of this result:

Theorem. For any undirected graph G = (V,E), S C V is a k-clique in G iff V' — S is a vertex
cover in G.

13

HAMPATH is NP-Complete

Theorem. HAMPATH is NP-complete.

Proof. Step 1: We've shown earlier that HAMPATH € NP because a list of all nodes in the
Hamiltonian path can be used as the certificate and verifying that it’s a Hamiltonian path from s
to t can be done in polynomial time.

Step 2: Now we will show that 3SAT <p HAMPATH. Since we know 8SAT is NP-complete, it
will then follow that HAMPATH is NP-complete. Here is the reduction:

F = “On input (¢), where ¢ is a 3CNF Boolean formula:
1. Construct the graph G as described on pp. 286-290 of Sipser, with distinguished nodes
s and t.
2. Output (G, s,t).”

The graph constructed in stage 1 involves a lot of nodes, so we omit the details here. Here’s an
executive summary:

e For each of the k clauses in ¢ there’s a single node.

e For each of the m variables in ¢ there’s an elaborate diamond-shaped structure consisting of
3k + 5 nodes, but adjacent diamonds share a node.

e The total number of nodes is (3k + 4)m + k + 1.
e There are directed edges laid out in a standard pattern within each diamond.

e There are additional directed edges connecting parts of each diamond structure to the clause
nodes, based on which variables appear in which clauses, and the exact way they’re connected
depends on whether that variable appears in positive form or is negated.

e The end result is as desired: The original formula is satisfiable iff the graph as constructed
has a Hamiltonian path from s to t.

14

UHAMPATH is NP-Complete

Theorem. UHAMPATH is NP-complete.

Proof. Step 1: We've shown earlier that UHAMPATH € NP since a list of nodes forming the
Hamiltonian path can be used as the certificate and verifying that it’s a Hamiltonian path can be
done in polynomial time.

Step 2: Now we show that HAMPATH <p UHAMPATH. Since we know HAMPATH is NP-
complete, it will then follow that UHAMPATH is NP-complete. Here is the reduction:

F = “On input (G, s,t), where G is a directed graph containing nodes s and t:
1. Construct the undirected graph G’ as described below, with distinguished nodes
s°ut and ¢,
2. Output (G, s°Ut, in).”

The undirected graph G’ is constructed from G as follows:

Nodes in G': For every node u in G, except s and ¢, there are 3 nodes in G': u!®, u™4, 4°ut, Call
each such set of 3 nodes a triple. For node s, there is a single node s°"* and for node ¢ there is a
single node #™. (This still applies if s = ¢.)

Edges in G': For every node u in G except s and ¢ there are 2 edges: (ul®,u4) and (ud, u9ut).

) % i
For every directed edge (uj,u;) in G there is an (undirected) edge (u{",w)"). This includes all

directed edges leaving s and all directed edges into ¢. Any directed edges in G that go into s or out
of ¢ have no counterparts in G'.

Suppose (G, s,t) € HAMPATH. Then there is a Hamiltonian path visiting all the nodes of G

in the order s,u1,us,...,ug,t. But then it’s easy to see that
out ,in , mid , out , in , mid , out in , mid , out 4in
S y UL, UL U U, Ug U ey U, Uy, Up 7t

is a Hamiltonian path in G'. Thus (G',s°%,#") € UHAMPATH.

For the other direction, suppose there is a Hamiltonian path from s°U to ¢ in G’. Then the
first edge in this path must go to some triple (since it can’t go directly to #™ unless there are only
two nodes in G’, in which case there are only two nodes in G, and the conclusion is easily seen to

be true in this case). Consider this triple to have the index 1. Since s°“ is not connected to ujd
or u$", this path must go from s to ui*. From there, the path must go to 44 since u"9 is only

connected to two nodes and one of these has already been visited. By the same reasoning, the next
node must be ug"*.

Following this, the next node must belong to another triple. Inductively, the same reasoning as
above shows that entire triples must be visited in the order uwi®, u™4 49", Thus the Hamiltonian

out
path in G’ must have the form

out ,,in , mid , out ,in _ mid , out in , mid , 0
ST ,ULL U U U Uy Uy e Up U Ug

ut’ o
Therefore s, u1, ug, ..., ux,t is a directed path in G from s to t. Thus (G/, s°", ") € UHAMPATH
implies (G, s,t) € HAMPATH.

Therefore this is a valid mapping reduction from HAMPATH to UHAMPATH, and it is easy
to see it can be performed in polynomial time. Since HAMPATH is NP-complete, it follows that
UHAMPATH is NP-complete.

15

Transforming HAMPATH Problem Instances
to UHAMPATH Problem Instances: An Example

Directed graph G Undirected graph G’

Hamiltonian path in G from s to ¢ Hamiltonian path in G’ from s°* to ¢

G has a Hamiltonian path from s to ¢ iff G has a Hamiltonian path from s to ¢,

16

Summary of Polytime Reductions
Explicitly Described (or Summarized)
in This Handout

SAT <p 8SAT
3SAT <p CLIQUE

CLIQUE <p VERTEX-COVER
3SAT <p VERTEX-COVER
3SAT <p HAMPATH
HAMPATH< p UHAMPATH

17

Epilogue: Relationship Between P and NP

Define the class of languages co-NP to be

co-NP = {L | L € NP}

Examples of languages in co-NP:
o SAT
e HAMPATH

How could you verify in polynomial time that
e 3 Boolean formula is not satisfiable?

e a directed graph does not have a Hamiltonian path?

Relationships between P, NP and co-NP:
e Recall that P C NP since a TM is just a special case of an NTM.
e Thus P C co-NP since P is closed under complement.
e Therefore P C NP N co-NP

So far this is all that can be proved about these language classes.

What’s the significance of the NP-complete languages?

e If a polytime decider can be found for any one of them, this would lead to polytime deciders
for all of them (as well as for all other languages in NP).

— This would further imply that many combinatorial problems of practical interest (not
just yes/no decision problems) can be solved in polynomial time.

e If it can be proven for any one of them that it cannot be decided in polynomial time, this
would imply that none of them can be decided in polynomial time.

— This would further imply that many combinatorial problems of practical interest (not
just decision problems) cannot be solved in polynomial time.

18

Relationship Between P and NP (Continued)

The current state of our knowledge is that any one of these four mutually exclusive possibilities
may be true:

P = NP = co-NP

P = NP =co-NP

P # NP = co-NP

NP = co-NP

D

NP # P # co-NP and P = NP N co-NP

NP # co-NP and P # NP N co-NP

<>

Prove which one of these is true and you’ll be famous!

19

