CS3500: Object-Oriented Design
Fall 2013

Class 6
9.23/4.2013

Northeastern University
© Jessica Young Schmidt, 2013 College of Computer and Information Science



Plan for Today

* Assignment 2
e Abc test cases
e Data Abstraction

e |[n-Class Exercise

Northeastern University
© Jessica Young Schmidt, 2013 2 College of Computer and Information Science



Signature:
Public static methods (of the Abc class):

defqg : Abc x int --> int
hijk : Abc x int --> Abc
lmno : Abc x 1int --> Abc
pgrs : 1nt --> Abc
tuvw : Abc --> int

Algebraic Specification:
Abc.defg (Abc.lmno (u, k), n)

= Abc.defg (u, n) if n < Abc.tuvw (u)
Abc.defg (Abc.lmno (u, k), n)

= k if n == Abc.tuvw (u)
Abc.defg (Abc.lmno (u, k), n)

= n if n > Abc.tuvw (u)
Abc.defg (Abc.pgrs (k), n)

= 3
Abc.hijk (Abc.lmno (u, k), n)

= Abc.lmno (Abc.hijk (u, n), k) if n < Abc.tuvw (u)
Abc.hijk (Abc.lmno (u, k), n)

= Abc.lmno (u, n + 1) if n == Abc.tuvw (u)
Abc.hijk (Abc.lmno (u, k), n)

= U if n > Abc.tuvw (u)

Abc.hijk (Abc.pgrs (k), n)
= Abc.lmno (Abc.pgrs (0), k)

Abc.tuvw (Abc.lmno (u, k))
= 1 4+ Abc.tuvw (u)
Abc.tuvw (Abc.pgrs (k))
= 0

Northeastern University
© Jessica Young Schmidt, 2013 3 College of Computer and Information Science



Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2);//1,2

f3 = Abc.Imno (2, 3);//1,2,3
f4 = Abc.Imno (3, 4);//1,2,3,4

assertTrue("tuvw fl", Abc.tuvw(fl)==0);
assertTrue("tuvw 2", Abc.tuvw(f2)==1);
assertTrue("tuvw f3", Abc.tuvw(f3)==2);

assertTrue("tuvw f4", Abc.tuvw(f4)==3);

Northeastern University
© Jessica Young Schmidt, 2013 4 College of Computer and Information Science



Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2); //1,2

f3 = Abc.Imno (f2, 3);//1,2,3
f4 = Abc.Imno (f3,4);//1,2,3,4

assertTrue("defg fl 1", Abc.defg(fl,1)==3);
assertTrue("defg fl 2", Abc.defg(fl,2)==3);
assertTrue("defg f4 1", Abc.defg(f4,1)==3);
assertTrue("defg f4 2", Abc.defg(f4,2)==4);
assertTrue("defg f4 3", Abc.defg(f4,3)==3);
assertTrue("defg f4 4", Abc.defg(f4,4)==4);

Northeastern University
© Jessica Young Schmidt, 2013 5 College of Computer and Information Science



Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2);//1,2

f3 = Abc.Imno (2, 3);//1,2,3
f4 = Abc.Imno (f3, 4);//1,2,3,4

assertTrue("hijk fl, 4", Abc.hijk(fl, 4).equals(Abc.Imno(Abc.pgrs(0), 1)));
assertTrue("hijk 2, -2", Abc.hijk(f2,-2).equals(Abc.Imno(Abc.Imno(Abc.pqrs(0), 1),2)));
assertTrue("hijk fl 1",Abc.hijk(fl,l).equals(Abc.Imno (Abc.pgrs (0), I)));
assertTrue("hijk f4 1", Abc.hijk(f4,1).equals(Abc.Imno(Abc.Imno(f2,2),4)));
assertTrue("hijk f4 2", Abc.hijk(f4,2).equals(Abc.Imno (f3, 3)));

assertTrue("hijk f4 3", Abc.hijk(f4,3).equals(f3));

Northeastern University
© Jessica Young Schmidt, 2013 6 College of Computer and Information Science



Northeastern University
© Jessica Young Schmidt, 2013 7 College of Computer and Information Science



Abstraction Mechanisms

* Abstraction by parameterization

* Abstraction by specification

Northeastern University
© Jessica Young Schmidt, 2013 8 College of Computer and Information Science



Kinds of Abstraction

* Procedural abstraction
e Data abstraction

e |teration abstraction

Northeastern University
© Jessica Young Schmidt, 2013 9 College of Computer and Information Science



What is data abstraction!?

Northeastern University
© Jessica Young Schmidt, 2013 10 College of Computer and Information Science



What is data abstraction!?

A type of abstraction that allows us to introduce
new types of data objects.

Northeastern University
© Jessica Young Schmidt, 2013 | College of Computer and Information Science



What must we define with a
new data type!



What must we define with a
new data type!

* set of objects

* set of operations characterizing the behavior of the
objects

data abstraction = <objects, operations>

Northeastern University
© Jessica Young Schmidt, 2013 13 College of Computer and Information Science



Abstract Data Type (ADT)

Review

* What is an ADT?
- set of data
- set of operations
- description of what operations do

e Within this course, when discuss ADTs, we will discuss them
using:

- a signature: names of operations and types

- a specification: agreement between client and
implementors

Northeastern University
© Jessica Young Schmidt, 2013 14 College of Computer and Information Science



Objects

e Object

—a programming entity that contains state
(data) and behavior (methods)

e Objects we've discussed so far...
—String
—Point
—Scanner
—Random
—File
—arrays

© S. Heckman & I. D. Young, 2009-2010 NC STATE UNIVERSITY




Objects

eState: a set of values (internal data)
stored in an object

eBehavior: a set of actions an object can
perform, often reporting or modifying its
internal state

© S. Heckman & J. D. Young, 2009-2010 NC STATE UNIVERSITY




Client Code

e Objects themselves are not complete
programs; they are components that are
given distinct roles and responsibilities

e Objects can be used as part of larger
programs to solve programs

eClient (or Client Code): code that
interacts with a class or objects of that
class

© S. Heckman & J. D. Young, 2009-2010 NC STATE UNIVERSITY




What do we gain from data
abstraction?



Abstraction Barrier

* Every piece of software has, or should have, an
abstraction barrier that divides the world into two
parts: clients and implementors.

- The clients are those who use the software. They
do not need to know how the software works.

- The implementors are those who build it. They
need to know how the software works.

Northeastern University
© Jessica Young Schmidt, 2013 19 College of Computer and Information Science



Abstraction Barrier

* Client Implementor

= Knows the behavior of the data
type

= Knows the behavior of the data
type

- Doesn’t know how the data type
was implemented, but can use the
data type based on

- Knows how the data type was
implemented

the specs

. G
U
. G
. G
(qv]
afl
-
O
)
@)
Q]
. G
)
)
<

Northeastern University
© Jessica Young Schmidt, 2013 20 College of Computer and Information Science



Which abstraction mechanisms
are used with data abstraction?

Northeastern University

College of Computer and Information Science



Which abstraction mechanisms
are used with data abstraction?

* Abstraction by parameterization

* Abstraction by specification

Northeastern University

College of Computer and Information Science



Specifications

* Formal

e |Informal

Northeastern University
© Jessica Young Schmidt, 2013 23 College of Computer and Information Science



vislibillity class dname{
//OVERVIEW: A brief description of the

// behavior of the type’s objects goes
// here.

//constructors
//specs for constructors go here

/ /methods
//specs for methods go here

Northeastern University
© Jessica Young Schmidt, 2013 24 College of Computer and Information Science



public class IntSet{

//OVERVIEW: IntSets are mutable,
unbounded
// sets of integers.

// A typical IntSet is {x1,...,Xn}

//constructors
public IntSet ()
//EFFECTS: Initializes this to be empty
//methods
public void insert (int x)
//MODIFIES: this
//EFFECTS: Adds x to the elements of
// this, i.e.,
// this post = this + {x}.
public void remove (int x)
//MODIFIES: this
//EFFECTS: Removes x from this, i.e.,
// this post = this - {x}
public boolean isIn (int x)

//EFFECTS: If x i1s 1n this returns true
//else returns false

public int size ()
//EFFECTS: Returns the cardinality of
//this
public int choose () throws Empty
Exception
//EFFECTS: If this is empty,
// EmptyException else
// returns an arbitrary element of
this
}

throws

© Jessica Young Schmidt, 2013

emptySet : -> FSetString
insert : FSetString x String -> FSetString
add FSetString x String -> FSetString
size FSetString -> int
isEmpty FSetString -> Dboolean
contains FSetString x String -> Dboolean
absent FSetString x String -> FSetString
FSetString.add(s0, kO0) = s0
if
FSetString.contains (s0, kO)
FSetString.add(s0, k0) = FSetString.insert(s0, kO)
if !

(FSetString.contains (s0, kO0))
FSetString.size (FSetString.emptySet()) = O
FSetString.size (FSetString.insert (s0, kO0))

= FSetString.size (s0) if
FSetString.contains (s0, kO)
FSetString.size (FSetString.insert (s0, kO0))

= 1 + FSetString.size(s0) if !
(FSetString.contains (s0, kO0))
FSetString.contains (FSetString.emptySet (), k) = false
FSetString.contains (FSetString.insert (s0, kO), k)

= true if k.equals (kO0)
FSetString.contains (FSetString.insert (s0, kO), k)

= FSetString.contains(s0, k) 1if !'(k.equals (k0))
FSetString.absent (FSetString.emptySet (), k) =
FSetString.emptySet ()
FSetString.absent (FSetString.insert (s0, kO0), k)

= FSetString.absent (s0, k) 1f k.equals (k0)
FSetString.absent (FSetString.insert (s0, kO0), k)

= FSetString.insert (FSetString.absent (s0, k), kO)
if !(k.equals (k0))

Northeastern University
25 College of Computer and Information Science



Implementing Data
Abstractions

Northeastern University
© Jessica Young Schmidt, 2013 26 College of Computer and Information Science



Access in Implementation

Northeastern University
© Jessica Young Schmidt, 2013 27 College of Computer and Information Science



Access Modifiers

» private - accessible only within the same class

* (default) - accessible only within the same package

» protected - accessible within the same package
and also accessible within subclasses

» public - accessible everywhere

Northeastern University
© Jessica Young Schmidt, 2013 28 College of Computer and Information Science



Item | 3: Minimize the accessibility of

classes and members
[Bloch]

Northeastern University
© Jessica Young Schmidt, 2013 29 College of Computer and Information Science



Item 45: Minimize the scope of local

variables
[Bloch]

Northeastern University
© Jessica Young Schmidt, 2013 30 College of Computer and Information Science



Item 14:In public classes, use

accessor methods, not public fields
[Bloch]

Northeastern University
© Jessica Young Schmidt, 2013 31 College of Computer and Information Science



Records

Northeastern University
© Jessica Young Schmidt, 2013 32 College of Computer and Information Science



Sidebar 5.1 - equals,clone,and

toString
[Liskov, p.94]

» Two objects are equals if they are behaviorally equivalent.
Mutable objects are equals only if they are the same object;
such types can inherit equals from Object.Immutable
objects are equals if they have the same state; immutable
types must implement equals themselves.

 clone should return an object that has the same state as its
object. Immutable types can inherit c1one from Object, but
mutable types must implement it them selves.

» toString should return a string showing the type and

current state of its object. All types must implement
toString themselves

Northeastern University
© Jessica Young Schmidt, 2013 33 College of Computer and Information Science



Item 8: Obey the general contract

when overriding equals
[Bloch]

The equals method implements an equivalence relation.
It is:

* Reflexive
* Symmetric
* Transitive
 Consistent

* For any non-null reference value x, x.equals(null) must
return false.

Northeastern University
© Jessica Young Schmidt, 2013 34 College of Computer and Information Science



ltem |0:Always override toString
[Bloch]

Northeastern University
© Jessica Young Schmidt, 2013 35 College of Computer and Information Science



Northeastern University
© Jessica Young Schmidt, 2013 36 College of Computer and Information Science



Queue

e Similar to list

* First In, First Out (FIFO)

* Enqueue

* Dequeue

Northeastern University
© Jessica Young Schmidt, 2013 37 College of Computer and Information Science



