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Plan for Today

* Assignment 2
e Abc test cases
e Data Abstraction

e |[n-Class Exercise
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Signature:
Public static methods (of the Abc class):

defqg : Abc x int --> int
hijk : Abc x int --> Abc
lmno : Abc x 1int --> Abc
pgrs : 1nt --> Abc
tuvw : Abc --> int

Algebraic Specification:
Abc.defg (Abc.lmno (u, k), n)

= Abc.defg (u, n) if n < Abc.tuvw (u)
Abc.defg (Abc.lmno (u, k), n)

= k if n == Abc.tuvw (u)
Abc.defg (Abc.lmno (u, k), n)

= n if n > Abc.tuvw (u)
Abc.defg (Abc.pgrs (k), n)

= 3
Abc.hijk (Abc.lmno (u, k), n)

= Abc.lmno (Abc.hijk (u, n), k) if n < Abc.tuvw (u)
Abc.hijk (Abc.lmno (u, k), n)

= Abc.lmno (u, n + 1) if n == Abc.tuvw (u)
Abc.hijk (Abc.lmno (u, k), n)

= U if n > Abc.tuvw (u)

Abc.hijk (Abc.pgrs (k), n)
= Abc.lmno (Abc.pgrs (0), k)

Abc.tuvw (Abc.lmno (u, k))
= 1 4+ Abc.tuvw (u)
Abc.tuvw (Abc.pgrs (k))
= 0
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Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2);//1,2

f3 = Abc.Imno (2, 3);//1,2,3
f4 = Abc.Imno (3, 4);//1,2,3,4

assertTrue("tuvw fl", Abc.tuvw(fl)==0);
assertTrue("tuvw 2", Abc.tuvw(f2)==1);
assertTrue("tuvw f3", Abc.tuvw(f3)==2);

assertTrue("tuvw f4", Abc.tuvw(f4)==3);
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Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2); //1,2

f3 = Abc.Imno (f2, 3);//1,2,3
f4 = Abc.Imno (f3,4);//1,2,3,4

assertTrue("defg fl 1", Abc.defg(fl,1)==3);
assertTrue("defg fl 2", Abc.defg(fl,2)==3);
assertTrue("defg f4 1", Abc.defg(f4,1)==3);
assertTrue("defg f4 2", Abc.defg(f4,2)==4);
assertTrue("defg f4 3", Abc.defg(f4,3)==3);
assertTrue("defg f4 4", Abc.defg(f4,4)==4);
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Abc Test Cases

fl =Abc.pgrs(l); //1

f2 = Abc.Imno (fl, 2);//1,2

f3 = Abc.Imno (2, 3);//1,2,3
f4 = Abc.Imno (f3, 4);//1,2,3,4

assertTrue("hijk fl, 4", Abc.hijk(fl, 4).equals(Abc.Imno(Abc.pgrs(0), 1)));
assertTrue("hijk 2, -2", Abc.hijk(f2,-2).equals(Abc.Imno(Abc.Imno(Abc.pqrs(0), 1),2)));
assertTrue("hijk fl 1",Abc.hijk(fl,l).equals(Abc.Imno (Abc.pgrs (0), I)));
assertTrue("hijk f4 1", Abc.hijk(f4,1).equals(Abc.Imno(Abc.Imno(f2,2),4)));
assertTrue("hijk f4 2", Abc.hijk(f4,2).equals(Abc.Imno (f3, 3)));

assertTrue("hijk f4 3", Abc.hijk(f4,3).equals(f3));
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Abstraction Mechanisms

* Abstraction by parameterization

* Abstraction by specification
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Kinds of Abstraction

* Procedural abstraction
e Data abstraction

e |teration abstraction
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What is data abstraction!?
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What is data abstraction!?

A type of abstraction that allows us to introduce
new types of data objects.
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What must we define with a
new data type!



What must we define with a
new data type!

* set of objects

* set of operations characterizing the behavior of the
objects

data abstraction = <objects, operations>
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Abstract Data Type (ADT)

Review

* What is an ADT?
- set of data
- set of operations
- description of what operations do

e Within this course, when discuss ADTs, we will discuss them
using:

- a signature: names of operations and types

- a specification: agreement between client and
implementors
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Objects

e Object

—a programming entity that contains state
(data) and behavior (methods)

e Objects we've discussed so far...
—String
—Point
—Scanner
—Random
—File
—arrays
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Objects

eState: a set of values (internal data)
stored in an object

eBehavior: a set of actions an object can
perform, often reporting or modifying its
internal state
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Client Code

e Objects themselves are not complete
programs; they are components that are
given distinct roles and responsibilities

e Objects can be used as part of larger
programs to solve programs

eClient (or Client Code): code that
interacts with a class or objects of that
class
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What do we gain from data
abstraction?



Abstraction Barrier

* Every piece of software has, or should have, an
abstraction barrier that divides the world into two
parts: clients and implementors.

- The clients are those who use the software. They
do not need to know how the software works.

- The implementors are those who build it. They
need to know how the software works.
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Abstraction Barrier

* Client Implementor

= Knows the behavior of the data
type

= Knows the behavior of the data
type

- Doesn’t know how the data type
was implemented, but can use the
data type based on

- Knows how the data type was
implemented
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Which abstraction mechanisms
are used with data abstraction?
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Which abstraction mechanisms
are used with data abstraction?

* Abstraction by parameterization

* Abstraction by specification
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Specifications

* Formal

e |Informal
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vislibillity class dname{
//OVERVIEW: A brief description of the

// behavior of the type’s objects goes
// here.

//constructors
//specs for constructors go here

/ /methods
//specs for methods go here
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public class IntSet{

//OVERVIEW: IntSets are mutable,
unbounded
// sets of integers.

// A typical IntSet is {x1,...,Xn}

//constructors
public IntSet ()
//EFFECTS: Initializes this to be empty
//methods
public void insert (int x)
//MODIFIES: this
//EFFECTS: Adds x to the elements of
// this, i.e.,
// this post = this + {x}.
public void remove (int x)
//MODIFIES: this
//EFFECTS: Removes x from this, i.e.,
// this post = this - {x}
public boolean isIn (int x)

//EFFECTS: If x i1s 1n this returns true
//else returns false

public int size ()
//EFFECTS: Returns the cardinality of
//this
public int choose () throws Empty
Exception
//EFFECTS: If this is empty,
// EmptyException else
// returns an arbitrary element of
this
}

throws

© Jessica Young Schmidt, 2013

emptySet : -> FSetString
insert : FSetString x String -> FSetString
add FSetString x String -> FSetString
size FSetString -> int
isEmpty FSetString -> Dboolean
contains FSetString x String -> Dboolean
absent FSetString x String -> FSetString
FSetString.add(s0, kO0) = s0
if
FSetString.contains (s0, kO)
FSetString.add(s0, k0) = FSetString.insert(s0, kO)
if !

(FSetString.contains (s0, kO0))
FSetString.size (FSetString.emptySet()) = O
FSetString.size (FSetString.insert (s0, kO0))

= FSetString.size (s0) if
FSetString.contains (s0, kO)
FSetString.size (FSetString.insert (s0, kO0))

= 1 + FSetString.size(s0) if !
(FSetString.contains (s0, kO0))
FSetString.contains (FSetString.emptySet (), k) = false
FSetString.contains (FSetString.insert (s0, kO), k)

= true if k.equals (kO0)
FSetString.contains (FSetString.insert (s0, kO), k)

= FSetString.contains(s0, k) 1if !'(k.equals (k0))
FSetString.absent (FSetString.emptySet (), k) =
FSetString.emptySet ()
FSetString.absent (FSetString.insert (s0, kO0), k)

= FSetString.absent (s0, k) 1f k.equals (k0)
FSetString.absent (FSetString.insert (s0, kO0), k)

= FSetString.insert (FSetString.absent (s0, k), kO)
if !(k.equals (k0))

Northeastern University
25 College of Computer and Information Science



Implementing Data
Abstractions
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Access in Implementation
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Access Modifiers

» private - accessible only within the same class

* (default) - accessible only within the same package

» protected - accessible within the same package
and also accessible within subclasses

» public - accessible everywhere
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Item | 3: Minimize the accessibility of

classes and members
[Bloch]
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Item 45: Minimize the scope of local

variables
[Bloch]
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Item 14:In public classes, use

accessor methods, not public fields
[Bloch]
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Records
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Sidebar 5.1 - equals,clone,and

toString
[Liskov, p.94]

» Two objects are equals if they are behaviorally equivalent.
Mutable objects are equals only if they are the same object;
such types can inherit equals from Object.Immutable
objects are equals if they have the same state; immutable
types must implement equals themselves.

 clone should return an object that has the same state as its
object. Immutable types can inherit c1one from Object, but
mutable types must implement it them selves.

» toString should return a string showing the type and

current state of its object. All types must implement
toString themselves
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Item 8: Obey the general contract

when overriding equals
[Bloch]

The equals method implements an equivalence relation.
It is:

* Reflexive
* Symmetric
* Transitive
 Consistent

* For any non-null reference value x, x.equals(null) must
return false.
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ltem |0:Always override toString
[Bloch]
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Queue

e Similar to list

* First In, First Out (FIFO)

* Enqueue

* Dequeue
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