
Northeastern University
College of Computer and Information Science© Jessica Young Schmidt, 2013

CS3500: Object-Oriented Design
Fall 2013

Class 6
9.23/4.2013

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Plan for Today
• Assignment 2

• Abc test cases

• Data Abstraction

• In-Class Exercise

2

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Signature:
 Public static methods (of the Abc class):
 defg : Abc x int --> int
 hijk : Abc x int --> Abc
 lmno : Abc x int --> Abc
 pqrs : int --> Abc
 tuvw : Abc --> int

Algebraic Specification:
 Abc.defg (Abc.lmno (u, k), n)
 = Abc.defg (u, n) if n < Abc.tuvw (u)
 Abc.defg (Abc.lmno (u, k), n)
 = k if n == Abc.tuvw (u)
 Abc.defg (Abc.lmno (u, k), n)
 = n if n > Abc.tuvw (u)
 Abc.defg (Abc.pqrs (k), n)
 = 3
 Abc.hijk (Abc.lmno (u, k), n)
 = Abc.lmno (Abc.hijk (u, n), k) if n < Abc.tuvw (u)
 Abc.hijk (Abc.lmno (u, k), n)
 = Abc.lmno (u, n + 1) if n == Abc.tuvw (u)
 Abc.hijk (Abc.lmno (u, k), n)
 = u if n > Abc.tuvw (u)
 Abc.hijk (Abc.pqrs (k), n)
 = Abc.lmno (Abc.pqrs (0), k)

 Abc.tuvw (Abc.lmno (u, k))
 = 1 + Abc.tuvw (u)
 Abc.tuvw (Abc.pqrs (k))
 = 0

3

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abc Test Cases
f1 = Abc.pqrs(1); //1

f2 = Abc.lmno (f1, 2); //1,2

f3 = Abc.lmno (f2, 3); //1,2,3

f4 = Abc.lmno (f3, 4); //1,2,3,4

assertTrue("tuvw f1", Abc.tuvw(f1)==0);

assertTrue("tuvw f2", Abc.tuvw(f2)==1);

assertTrue("tuvw f3", Abc.tuvw(f3)==2);

assertTrue("tuvw f4", Abc.tuvw(f4)==3);

4

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abc Test Cases
f1 = Abc.pqrs(1); //1

f2 = Abc.lmno (f1, 2); //1,2

f3 = Abc.lmno (f2, 3); //1,2,3

f4 = Abc.lmno (f3, 4); //1,2,3,4

assertTrue("defg f1 1", Abc.defg(f1,1)==3);

assertTrue("defg f1 2", Abc.defg(f1,2)==3);

assertTrue("defg f4 1", Abc.defg(f4,1)==3);

assertTrue("defg f4 2", Abc.defg(f4,2)==4);

assertTrue("defg f4 3", Abc.defg(f4,3)==3);

assertTrue("defg f4 4", Abc.defg(f4,4)==4);

5

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abc Test Cases
f1 = Abc.pqrs(1); //1

f2 = Abc.lmno (f1, 2); //1,2

f3 = Abc.lmno (f2, 3); //1,2,3

f4 = Abc.lmno (f3, 4); //1,2,3,4

assertTrue("hijk f1, 4", Abc.hijk(f1, 4).equals(Abc.lmno(Abc.pqrs(0),1)));

assertTrue("hijk f2, -2", Abc.hijk(f2,-2).equals(Abc.lmno(Abc.lmno(Abc.pqrs(0),1),2)));

assertTrue("hijk f1 1", Abc.hijk(f1,1).equals(Abc.lmno (Abc.pqrs (0), 1)));

assertTrue("hijk f4 1", Abc.hijk(f4,1).equals(Abc.lmno(Abc.lmno(f2,2),4)));

assertTrue("hijk f4 2", Abc.hijk(f4,2).equals(Abc.lmno (f3, 3)));

assertTrue("hijk f4 3", Abc.hijk(f4,3).equals(f3));

6

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science7

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abstraction Mechanisms
• Abstraction by parameterization

• Abstraction by specification

8

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Kinds of Abstraction
• Procedural abstraction

• Data abstraction

• Iteration abstraction

9

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

What is data abstraction?

10

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

What is data abstraction?

A type of abstraction that allows us to introduce
new types of data objects.

11

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

What must we define with a
new data type?

12

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

What must we define with a
new data type?

• set of objects

• set of operations characterizing the behavior of the
objects

data abstraction = <objects, operations>

13

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abstract Data Type (ADT)
Review

• What is an ADT?

- set of data

- set of operations

- description of what operations do

• Within this course, when discuss ADTs, we will discuss them
using:

- a signature: names of operations and types

- a specification: agreement between client and
implementors

14

© S. Heckman & J. D. Young, 2009-2010

Objects
•Object

–a programming entity that contains state
(data) and behavior (methods)

•Objects we’ve discussed so far…
–String
–Point
–Scanner
–Random
–File
–arrays

© S. Heckman & J. D. Young, 2009-2010

Objects
•State: a set of values (internal data)
stored in an object

•Behavior: a set of actions an object can
perform, often reporting or modifying its
internal state

© S. Heckman & J. D. Young, 2009-2010

Client Code
•Objects themselves are not complete
programs; they are components that are
given distinct roles and responsibilities

•Objects can be used as part of larger
programs to solve programs

•Client (or Client Code): code that
interacts with a class or objects of that
class

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

What do we gain from data
abstraction?

18

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abstraction Barrier
• Every piece of software has, or should have, an

abstraction barrier that divides the world into two
parts: clients and implementors.

- The clients are those who use the software. They
do not need to know how the software works.

- The implementors are those who build it. They
need to know how the software works.

19

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Abstraction Barrier
• Client

- Knows the behavior of the data
type

- Doesn’t know how the data type
was implemented, but can use the
data type based on

the specs

• Implementor

- Knows the behavior of the data
type

- Knows how the data type was
implemented

20

A
bs

tr
ac

tio
n

Ba
rr

ie
r

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Which abstraction mechanisms
are used with data abstraction?

21

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Which abstraction mechanisms
are used with data abstraction?
• Abstraction by parameterization

• Abstraction by specification

22

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Specifications
• Formal

• Informal

23

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

visibility class dname{
 //OVERVIEW: A brief description of the
 // behavior of the type’s objects goes
 // here.

 //constructors
 //specs for constructors go here

 //methods
 //specs for methods go here
}

24

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

public class IntSet{
 //OVERVIEW: IntSets are mutable,
unbounded
 // sets of integers.
 // A typical IntSet is {x1,...,Xn}

 //constructors
 public IntSet()
 //EFFECTS: Initializes this to be empty

 //methods
 public void insert (int x)
 //MODIFIES: this
 //EFFECTS: Adds x to the elements of
 // this, i.e.,
 // this_post = this + {x}.

 public void remove (int x)
 //MODIFIES: this
 //EFFECTS: Removes x from this, i.e.,
 // this_post = this - {x}

 public boolean isIn (int x)
 //EFFECTS: If x is in this returns true
 //else returns false

 public int size ()
 //EFFECTS: Returns the cardinality of
 //this

 public int choose () throws Empty
Exception
 //EFFECTS: If this is empty, throws
 // EmptyException else
 // returns an arbitrary element of
this
}

25

emptySet : -> FSetString
insert : FSetString x String -> FSetString
add : FSetString x String -> FSetString
size : FSetString -> int
isEmpty : FSetString -> boolean
contains : FSetString x String -> boolean
absent : FSetString x String -> FSetString

FSetString.add(s0, k0) = s0
 if
FSetString.contains(s0, k0)
FSetString.add(s0, k0) = FSetString.insert(s0, k0)
 if !
(FSetString.contains(s0, k0))

FSetString.size(FSetString.emptySet()) = 0
FSetString.size(FSetString.insert(s0, k0))
 = FSetString.size(s0) if
FSetString.contains(s0, k0)
FSetString.size(FSetString.insert(s0, k0))
 = 1 + FSetString.size(s0) if !
(FSetString.contains(s0, k0))

FSetString.contains(FSetString.emptySet(), k) = false
FSetString.contains(FSetString.insert(s0, k0), k)
 = true if k.equals(k0)
FSetString.contains(FSetString.insert(s0, k0), k)
 = FSetString.contains(s0, k) if !(k.equals(k0))

FSetString.absent(FSetString.emptySet(), k) =
FSetString.emptySet()
FSetString.absent(FSetString.insert(s0, k0), k)
 = FSetString.absent(s0, k) if k.equals(k0)
FSetString.absent(FSetString.insert(s0, k0), k)
 = FSetString.insert(FSetString.absent(s0, k), k0)
 if !(k.equals(k0))

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Implementing Data
Abstractions

26

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Access in Implementation

27

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Access Modifiers
• private - accessible only within the same class

• (default) - accessible only within the same package

• protected - accessible within the same package
and also accessible within subclasses

• public - accessible everywhere

28

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Item 13: Minimize the accessibility of
classes and members

[Bloch]

29

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Item 45: Minimize the scope of local
variables

[Bloch]

30

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Item 14: In public classes, use
accessor methods, not public fields

[Bloch]

31

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Records

32

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Sidebar 5.1 - equals, clone, and
toString

[Liskov, p.94]

• Two objects are equals if they are behaviorally equivalent.
Mutable objects are equals only if they are the same object;
such types can inherit equals from Object. Immutable
objects are equals if they have the same state; immutable
types must implement equals themselves.

• clone should return an object that has the same state as its
object. Immutable types can inherit clone from Object, but
mutable types must implement it them selves.

• toString should return a string showing the type and
current state of its object. All types must implement
toString themselves

33

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Item 8: Obey the general contract
when overriding equals

[Bloch]

The equals method implements an equivalence relation.
It is:

• Reflexive

• Symmetric

• Transitive

• Consistent

• For any non-null reference value x, x.equals(null) must
return false.

34

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Item 10: Always override toString
[Bloch]

35

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science36

© Jessica Young Schmidt, 2013
Northeastern University
College of Computer and Information Science

Queue
• Similar to list

• First In, First Out (FIFO)

• Enqueue

• Dequeue

37

