
Lab 9 c©2010 Felleisen, Proulx, et. al.

9 Sorting: Time Trials; Generating Javadocs

Goals

The first part of this lab will let you experience first-hand the differences
between the time required to sort a (medium) large sets of data when using
different sorting algorithms. It will also illustrate a technique one can use
to measure the timing of algorithms in general.

In the second part of the lab you will learn how to generate the Javadoc
documentation, and practice reading Javadoc style documentation for pro-
grams. After today we require that all your programs include documen-
tation written in the Javadoc style.

9.1 Sorting: Time Complexity of Algorithms

One of the concerns of program designers is the efficiency of the program.
Programs that deal with large amounts of data and complex calculations
may take a long time to complete. The designer must be able to judge
beforehand whether the program can complete its task in a reasonable time,
and look for ways to improve the program efficiency when necessary.

We will use several different sorting algorithms (programs that produce
a sorted list of data from the given unsorted one) to illustrate the need for
understanding program complexity, and will learn how we can measure
and compare the timing performance of several alternative solutions to the
same problem.

9.1.1 Selection sort

In Lab 8, the last part (8.2) asked you to implement the Selection sort al-
gorithm. It looks like nobody had the chance to complete that part of the
lab.

Start this lab by finishing the last part of Lab 8 that deals with the Selec-
tion sort.

9.1.2 Quicksort

In this part you will learn a bit more about the QuickSort sorting algorithm
and do some preliminary timing measurements for a couple of sorting al-
gorithms.

Start with a new project SortingAlgorithms and import all files in Sort-
ing.zip file.

1

c©2010 Felleisen, Proulx, et. al. Lab 9

1. Save the file citydb.txt in the same directory where Eclipse has your
src and bin folder.

Set up the Configuration as usual and run the project. It will come
up with a file dialog asking you to select the input file. Choose the
file citydb.txt. Now look at the results. Besides the tests, the output
includes the timing results for the insertion sort included in the code.

Change the number of data items to be read to 30000 and run the tests
again. Be patient, it may take a while.

2. Add the code for the two variants of QuickSort posted on the course
wiki. Add the code that invokes each algorithm with the data from
the citydb.txt file. Add the necessary test cases. Finally add the code
that measures the time needed to complete each algorithm.

Run the program and observe the timing results.

3. The Algorithms.java files includes the definition of a list of items of
the type T. Add the method quicksort to these classes and the in-
terface - using the technique similar to what we did in class and what
you did in Fundies 1 last semester.

4. Add tests, the code that invokes the algorithm with the full database
of cities, and the code that measures the timing.

Run the program and observe the timing results.

5. The last part is a pencil and paper exercise.

For the following starting data show how each of the three versions
of the QuickSort proceeds. We have shown you the beginning of the
pencil and paper analysis of the given Insertion sort algorithm.

+---+---+---+---+---+---+---+---+---+
| 7 | 2 | 9 | 5 | 4 | 8 | 3 | 1 | 6 |
+---+---+---+---+---+---+---+---+---+

inserting 1:
sorted

+---+---+---+---+---+---+---+---++---+
| 7 | 2 | 9 | 5 | 4 | 8 | 3 | 1 || 6 |
+---+---+---+---+---+---+---+---++---+

ˆ ˆ
compare - no swap

inserting 3:
sorted

+---+---+---+---+---+---+---++---+---+
| 7 | 2 | 9 | 5 | 4 | 8 | 3 || 1 | 6 |
+---+---+---+---+---+---+---++---+---+

ˆ ˆ
swap

2

Lab 9 c©2010 Felleisen, Proulx, et. al.

sorted
+---+---+---+---+---+---++---+---+---+
| 7 | 2 | 9 | 5 | 4 | 8 || 1 | 3 | 6 |
+---+---+---+---+---+---++---+---+---+

ˆ ˆ
compare - no swap

inserting 8:
sorted

+---+---+---+---+---+---++---+---+---+
| 7 | 2 | 9 | 5 | 4 | 8 || 1 | 3 | 6 |
+---+---+---+---+---+---++---+---+---+

ˆ ˆ
swap

sorted
+---+---+---+---+---++---+---+---+---+
| 7 | 2 | 9 | 5 | 4 || 1 | 8 | 3 | 6 |
+---+---+---+---+---++---+---+---+---+

ˆ ˆ
swap

sorted
+---+---+---+---+---++---+---+---+---+
| 7 | 2 | 9 | 5 | 4 || 1 | 3 | 8 | 6 |
+---+---+---+---+---++---+---+---+---+

ˆ ˆ
swap

sorted
+---+---+---+---+---++---+---+---+---+
| 7 | 2 | 9 | 5 | 4 || 1 | 3 | 6 | 8 |
+---+---+---+---+---++---+---+---+---+

ˆ ˆ
swap

inserting 4:

...

9.2 Documentation

This is partly
For this lab download the following files:

• The file Balloon.java — our sample data class

• The file TopThree.java that has been used to practice working with
ArrayList in imperative style (using mutation).

• The Examples.java file that defines examples of all data and defines all
tests.

Create a new Project Lab9 and import into it all files from the zip file.
Import the tester.jar and colors.jar.

9.2.1 Generating Documentation

Once Eclipse shows you that there are no errors in your files select Generate
Javadoc... from the Project pull-down menu. Select to generate docs for all

3

c©2010 Felleisen, Proulx, et. al. Lab 9

files in your project with the destination Lab9/doc directory. Make sure you
select all files for which you wish to generate the documentation.

You should be able to open the index.html file in the Lab9/doc directory
and see the documentation for this project. Compare the documentation
for the class Balloon with the web pages. You see that all comments from
the source file have been converted to the web document.

Observe the format of the comments, especially the /** at the beginning
of the comment. If you do not understand the rules, ask the TA or one of
the tutors, or experiment with new comments. From now on all of your
work should have a proper Javadoc style documentation.

9.2.2 Stack, Queue, Priority Queue, LinkedList; Vector

Look up the documentation for the following Java classes and interfaces:
Stack, Queue, PriorityQueue, List, LinkedList and Vector.
Identify which of them represent interfaces, which represent abstract classes,
and which provide a complete implementation that you can use in your
program. Draw a class diagram that shows the relationship between these
classes and interfaces.

4

