
Lab 7 c©2010 Felleisen, Proulx, et. al.

7 Abstracting over the Data Type; Java Documenta-
tion; Direct Access Data Structures

This lab consists of three parts.
In the first part you will learn how to abstract over the type of data a

collection of data represents.
In the second part we will look at how Java documentation represents

the classes and methods and will look at a couple of classes in the Java
Collections Library.

In the third part we will work briefly with a data structure that allows
us to access directly a specified item in the collection.

7.1 Abstracting over the Data Type

The goal of this section of the lab is to understand how we can design a
more general programs by defining the common behavior for structured
data, such as lists or binary trees, using parametrized data types.

Begin by downloading lab8.zip and building a project that contains all
the files as well as the latest version of the tester.jar.

Your project should have the following files:

• BookBST.java

• AcctBST.java

A. Each file represents a complete program that deals with binary search
trees. Set up two Configurations to run each of them and run them.

B. In Eclipse, Window menu − > New Window will open a new window.
Set up the new Eclipse window to show Java Perspective by selecting
Window menu− > Open Perspective− > Java. Open the two files in the
two windows in full size, side by side. Now observe the differences
and similarities.

C. Copy the file AcctBST.java and add it to the project with the name
BST.java. We now have two copies of class and interface definitions.

Comment out the class definition for the class Acct. The one defined
originally will be used again.

Now replace Acct with <T> in all places that define the data type.
So,

1



c©2010 Felleisen, Proulx, et. al. Lab 7

• ABSTAcct becomes ABST<T>

• LeafAcct becomes Leaf<T>

• NodeAcct becomes Node<T>

• ICompAcct becomes IComp<T>

Rename the ExamplesAcctBST class to ExamplesBST.

D. What else needs to be done? In the classes ABST, Leaf, and Node, in
every place where we refer to Acct replace this with T.

E. We are almost done. Look at what still needs to be done. How will
you deal with the similarities between the definitions of ICompAcct
and ICompBook? Figure out this part.

F. The last part is to make the necessary changes in the ExamplesBST
class. Here we need to specify what type of data will the binary search
tree contain. So, the type ABSTAcct becomes ABST<Acct> indicat-
ing that we are dealing with the abstract class ABST with the type
argument Acct. Finish the changes until there are no errors or warn-
ings. Run the tests.

G. Copy the data definitions and tests from the ExamplesBookBST class,
make the necessary changes, and run these tests as well.

7.2 Java Documentation

So far our purpose statements were sufficient for someone trying to un-
derstand how our program works and where to make changes, if another
person wants to improve the program we have written. However, if we
design a program that represents a reusable parametrized data type, such
as our lists or binary search trees parametrized over the type of data they
represent, the user of the code may not be interested in all the details of the
implementation, but only the fields that she may be able to access, the con-
structors that can be used, and methods that can be invoked or overridden.

In general, most of the modern general purpose languages come with
a special language for writing the purpose statements. The statements are
then translated into cross-referenced web pages that allow the programmer
to inspect the library without looking at the actual code.

2



Lab 7 c©2010 Felleisen, Proulx, et. al.

JavaDocs basics

A. Go to the javalib web site at http://www.ccs.neu.edu/javalib. Go to
the Tester tab, then look at JavaDocs tab and open the documentation
for the latest version of the tester library. The web site you see has the
documentation for all public fields and methods in the entire library.
Click on the Tester tab on the left and you will see a description of
the class Tester.

B. Scroll through the descriptions of the methods until you find checkInexact.
Click on the method — and you will see the detailed description of
the method - its purpose, its parameters, and the return value it pro-
duces.

C. Now look at the method checkRange in the Method Summary sec-
tion. You can see that there is a number of methods with this name,
some that consume an argument of the type java.lang.Comparable<T>,
some that consume an argument of the type java.util.Comparator<T>.

D. These are two interfaces defined in Java libraries. The first is a part
of Java main language package (java.lang. The classes and in-
terfaces defined there are automatically imported to every Java pro-
gram. For example, the class String is specified in the documenta-
tion as java.lang.String. We have used it all along without the
need for any import statements.

E. However, the interface java.util.Comparator<T> is a part of the
Java Collection Framework package (java.util), a library of classes
and interfaces for dealing with collections of data.

Java Collections Framework

Go to the web site for Java libraries at: http://java.sun.com/javase/6/docs/api/.

A. Scroll through the All Classes frame on the left till you find Comparable
and Comparator. You can see in the description that there is a lot of
detail in there, much more than we would expect from such a simple
function object. We will address some of these issues in the lectures.

B. It looks like we could replace our interface IComp<T> for the bi-
nary search trees with the interface Comparator<T>. Do it. You

3



c©2010 Felleisen, Proulx, et. al. Lab 7

will need to add the import java.util.*; statement at the be-
ginning of your program. Otherwise, the program should work as
before.

ArrayList

Scroll through the All Classes frame on the left again, till you find ArrayList.
The lecture handout included some of the methods one can use when ma-
nipulating a data collection that is represented by an ArrayList. Use the
handout or the online documentation as you work on the last part of the
lab.

7.3 Direct Access Data Structures with Mutation

For this part of the lab download the following files:

• The file Balloon.java — our sample data class

• The file TopThree.java will be used to practice working with
ArrayList in imperative style (using mutation).

• The Examples.java file that defines examples of all data and defines all
tests.

Create a new Project Lab9 and import into it all files from the zip file.
Import the tester.* and colors.* libraries.

In this part of the lab we will work on lists of balloons, using the Java
library class ArrayList.

Here are some of the methods defined in the class ArrayList:
// how many items are in the collection
int size();

// add the given object of the type E at the end of this collection
// false if no space is available
boolean add(E obj);

// return the object of the type E at the given index
E get(int index);

// replace the object of the type E at the given index
// with the given element
// produce the element that was at the given index before this change
E set(int index, E obj);

Other methods of this class are isEmpty (checks whether we have
added any elements to the ArrayList), contains (checks if a given ele-
ment exists in the ArrayList — using the equals method).

4



Lab 7 c©2010 Felleisen, Proulx, et. al.

7.4 Using the ArrayList class

Notice that, in order to use an ArrayList, we have to add

import java.util.ArrayList;

at the beginning of our class file.
The first method you design will be within the class TopThree. The

remaining methods will be defined within the Examples class. Of course,
the tests for all methods will still be inside the Examples class.

A. The class TopThree now stores the values of the three elements in an
ArrayList. Complete the definition of the reorder method. Use
the previous two parts as a model. Look up the documentation for
the Java class ArrayList to understand what methods you can use.

Do not forget to run your tests.

B. Design the method isSmallerThanAtIndex that determines whether
the radius of the balloon at the given position (index) in the given
ArrayList of Balloons is smaller than the given limit.

C. Design the method isSameAsAtIndex that determines whether the
balloon at the given position in the given ArrayList of Balloons
has the same size and location as the given Balloon.

D. Design the method inflateAtIndex that increases the radius of a
Balloon at the given index by 5.

E. Design the method swapAtIndices that swaps the elements of the
given ArrayList at the two given positions (indices).

Note 1: We have used the words position in the ArrayList and index in
the ArrayList interchangeably in the previous descriptions of tasks. Both
are commonly used and we wanted to make sure you get used to both ways
of describing an element in an ArrayList.

Note 2: Of course, the tests for these methods will also appear in the
Examples class. Make sure that every test can be run independently of
all other tests. To do this, you must initialize the needed data inside of the
test method, evaluate the test by invoking the appropriate checkExpect
method, and reset the data to the original state after the test is completed.

Note: Finish this lab and include your work in your portfolio.

5


