
Lab 6 c©2010 Felleisen, Proulx, et. al.

6 Mutating Object State

Goals

Today we touch the void. (Go, see the movie, or read the book, to understand
how scary the void can be.) We will focus on the following four topics:

• Designing methods that change the state of an object

• Designing tests for these methods

• Java Runtime Exceptions

• Designing mutable linked lists and methods for mutable linked lists.

Rather than looking for just one correct solution to a problem, we will
examine several possible ways of dealing with a problem and try to com-
pare the solutions.

The Problem

We will work with bank accounts: checking, savings, or credit line. The
bank has a list of these accounts and the customer may deposit some money
or withdraw some money. Checking accounts require that the customer
keeps a minimum balance, and so never withdraws all money in the ac-
count. Credit line records the balance as the amount currently owed, and
it also remembers the maximum the customer can borrow. Customer can
withdraw money, if adding the desired amount does not increase the bal-
ance owed to be above the maximum limit. When the customer deposits
money to the credit line account, it decreases the amount owed by the de-
posited amount. Customer cannot overpay the debt in the credit line.

6.1 Methods that effect a simple state change

A. Create a Java Project and add following files to it’s source directory.

• Account.java

• Checking.java

• Savings.java

• Credit.java

• Bank.java

1

c©2010 Felleisen, Proulx, et. al. Lab 6

• AccountList.java

• Examples.java

B. Make several examples of data for Checking, Savings, and Credit Ac-
counts.

C. Describe to your partner several scenarios of making deposits and
withdrawals, to make sure you know when the transaction cannot be
completed.

D. Add the method deposit to the abstract class Account and
implement it in all subclasses:

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount);

When doing so we encounter several problems:

• Question: How do we signal that the transaction cannot be com-
pleted?
Answer: Throw a RuntimeException changing appropriately
the following code:

throw new RuntimeException(
"Balance too low: " + this.balance);

Make the message meaningful. You may add to the message
some information about the account that caused the problem
- the customer name, or the current balance available, or how
much more would there need to be in the account for the trans-
action to go through.

• Question: How do we test that the method will throw the ex-
pected exception with the expected message?
Answer: Suppose the method invocation:

this.bobAcct.withdraw(1000)

throws a RuntimeException with the message:
"1000 is not available".

The test would then be:

2

Lab 6 c©2010 Felleisen, Proulx, et. al.

t.checkException(
"Testing withdrawal from checking",
new RuntimeException("1000 is not available"),
this.bobAcct,
"withdraw",
1000);

The first argument is a String that describes what we are test-
ing — it is optional and can be omitted. The second argument
defines the Exception our method invocation should throw.
The third argument is the instance that invokes the method, the
fourth argument is the method name, and after that we list as
many arguments as the method consumes — all separated by
commas. It could be no arguments, or five arguments — it does
not matter. For our method that performs the deposit, it will be
just the amount we wish to deposit.

• Question: How do we test the correct method behavior when the
transaction goes through?
Answer: We look at the purpose and effect statements. Because
the method produces a value as well as has an effect on the state
of the object that invoked, we must test both parts.
We first define instances of data we wish to use. We also define
the method reset that initializes the values for the data we ex-
pect to work with and may change during the tests. We can then
design the test as follows (assuming that the this.check1 is
the instance that should invoke the method:

//Tests the deposit methods inside certain accounts.
void testDeposit(Tester t){

reset();
t.checkExpect(check1.deposit(100), 100);
t.checkExpect(check1,
new Checking(0001, 100, "First Checking Account", 0));

reset();
}

Notice that we use the reset method twice. At the start we
make sure that the data we use has the correct values before the
method is invoked, after the test we reset the data to the original
values, so that the test would not affect any other part of the
program. Sometimes these two method invocation are divided
into two tasks: setup and tear-down. This is true of the setup

3

c©2010 Felleisen, Proulx, et. al. Lab 6

actually prepares the data to have some special values before the
method is invoked, but afterwards, we want to reset the values
to more normal state.
There are two tests we have performed. The first one is just like
what we have done in the past — we compare the value pro-
duced by the method invocation with the expected value. The
second test verifies that the state of the object we were modify-
ing did indeed change as expected.
Try the following incorrect implementations in the Checking
class of this method to see why these tests are necessary:

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return this.balance + amount;

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
this.balance = balance + amount;
return amount;

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return 20 + (this.balance = balance + amount);

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return this.balance = balance + amount;

}

Only one of these is correct. Notice the use of the assignment as
the return value and as the value used in an arithmetic expres-
sion. The result of the assignment is always the value assigned
to the identifier on the left-hand side.
Of course, we need to test the method in every class in the union:
the Savings class as well as the CreditLine class.

4

Lab 6 c©2010 Felleisen, Proulx, et. al.

E. Add the method withdraw to the abstract class Account and
implement it in all subclasses:

// EFFECT: Withdraw the given funds from this account
// Return the new balance
int withdraw(int funds);

Make sure your tests are defined as carefully as we have done in the
previous case.

6.2 Methods that change the state of structured data

The class Bank keeps track of all accounts.

A. Design the method openAcct to Bank that allow the customer to
open a new account in the bank.

// EFFECT:
// add a new account to the list of accounts kept by this bank
void add(Account acct)

Make sure you design your tests carefully.

B. Design the method deposit that deposits the given amount to the
account with the given name and account number.

Make sure you report any problems, such as no such account, or that
the transaction cannot be completed.

Make sure you design your tests carefully.

C. Design the method withdraw that withdraws the given amount from
the account with the given name and account number.

Make sure you report any problems, such as no such account, or that
the transaction cannot be completed.

Make sure you design your tests carefully.

D. Design the method removeAccount that will remove the account
with the given account id and the given name from the list of accounts
in a bank.

void removeAccount(int acctNo, String name)

Hint: Throw an exception if the account is not found

Follow the Design Recipe!

5

c©2010 Felleisen, Proulx, et. al. Lab 6

6.3 Designing Mutable Lists

Start a new project LinkedLists and import into it all files in the Lists.zip file.
You should have three files:

• Node.java

• LoS.java

• ExamplesLoS.java

In the previous example we needed a wrapper class to implement a
mutable list of accounts, because we could not mutate an empty list into
a nonempty list. This example shows a similar technique, but instead of
replacing a large part of the original list with a new list, we will change the
structure of the list without modifying anything except the nodes involved
in inserting or removing the nodes.

The classes LoS and Node represent a collection of Strings organized
as a list. Instead of having two different classes for the empty list and for
nonempty list, we have a class that represents a node in a list (similar to
our Cons classes that contained the data and a link to the next item), and a
subclass that represents the last node in the list (a sentinel).

The list LoS will always contain one Node. If the list is empty, the Node
is the special sentinel node.

The following picture illustrates the structure of an empty linked list and
a linked list after we added three Strings, ”def”, ”pqr”, and ”abc”:

+------+
| LoS |
+------+ +----------+
| node |->| Sentinel |
+------+ +----------+

| |
| null |
+----------+

+------+
| LoS |
+------+ +------+ +------+ +------+ +----------+
| node |->| Node | +->| Node | +->| Node | +->| Sentinel |
+------+ +------+ | +------+ | +------+ | +----------+

| abc | | | pqr | | | def | | | |
| next |-+ | next |-+ | next |-+ | null |
+------+ +------+ +------+ +----------+

6

Lab 6 c©2010 Felleisen, Proulx, et. al.

A. Study the code and make sure you understand what is going on. Add
an example to each test defined in the ExamplesLoS class.

B. Add tests for the methods that are not tested.

C. Design the method removeNode for the class LoS that removes the
node that contains as data the given String.

D. Design the method size that counts the number of nodes in a list
(LoS), not including the sentinel node.

7

